Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform


Atomically thin two-dimensional semiconductors such as MoS2 hold great promise for electrical, optical and mechanical devices and display novel physical phenomena. However, the electron mobility of mono- and few-layer MoS2 has so far been substantially below theoretically predicted limits, which has hampered efforts to observe its intrinsic quantum transport behaviours. Potential sources of disorder and scattering include defects such as sulphur vacancies in the MoS2 itself as well as extrinsic sources such as charged impurities and remote optical phonons from oxide dielectrics. To reduce extrinsic scattering, we have developed here a van der Waals heterostructure device platform where MoS2 layers are fully encapsulated within hexagonal boron nitride and electrically contacted in a multi-terminal geometry using gate-tunable graphene electrodes. Magneto-transport measurements show dramatic improvements in performance, including a record-high Hall mobility reaching 34,000 cm2 V–1 s–1 for six-layer MoS2 at low temperature, confirming that low-temperature performance in previous studies was limited by extrinsic interfacial impurities rather than bulk defects in the MoS2. We also observed Shubnikov–de Haas oscillations in high-mobility monolayer and few-layer MoS2. Modelling of potential scattering sources and quantum lifetime analysis indicate that a combination of short-range and long-range interfacial scattering limits the low-temperature mobility of MoS2.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: vdW device structure and interface characterization.
Figure 2: Gate-tunable and temperature-dependent graphene–MoS2 contacts.
Figure 3: Temperature, carrier density dependence of Hall mobility and scattering mechanism.
Figure 4: Observation of Shubnikov–de Haas oscillations in an hBN-encapsulated MoS2 device.


  1. 1

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Lee, G. H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Mak, K., Lee, C., Hone, J., Shan, J. & Heinz, T. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  4. 4

    Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nature Commun. 3, 1011 (2012).

    Article  Google Scholar 

  7. 7

    Das, S., Chen, H-Y., Penumatcha, A. & Appenzeller, J. High performance multilayer MoS2 with scandium contacts. Nano Lett. 13, 100–105 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Baugher, B., Churchill, H., Yang, Y. & Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2 . Nano Lett. 13, 4212–4216 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nature Mater. 12, 815–820 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  11. 11

    Mak, K., McGill, K., Park, J. & McEuen, P. Valleytronics. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Jiang, T. et al. Valley and band structure engineering of folded MoS2 bilayers. Nature Nanotech. 9, 825–829 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Mak, K., He, K., Shan, J. & Heinz, T. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Bao, W., Cai, X., Kim, D., Sridhara, K. & Fuhrer, M. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013).

    Article  Google Scholar 

  16. 16

    Choi, M., Lee, G. H., Yu, Y., Lee, D. & Lee, S. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nature Commun. 4, 1642 (2013).

    Article  Google Scholar 

  17. 17

    Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Yu, L. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14, 3055–3063 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Sundaram, R., Engel, M., Lombardo, A. & Krupke, R. Electroluminescence in single layer MoS2 . Nano Lett. 13, 1416–1421 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Yoon, J. et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9, 3295–3300 (2013).

    CAS  Google Scholar 

  22. 22

    Qiu, H. et al. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 100, 123104 (2012).

    Article  Google Scholar 

  23. 23

    Kaasbjerg, K., Thygesen, K. & Jacobsen, K. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article  Google Scholar 

  24. 24

    Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

    Google Scholar 

  25. 25

    Li, X. et al. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87, 115418 (2013).

    Article  Google Scholar 

  26. 26

    Novoselov, K. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Kappera, R., Voiry, D., Yalcin, S. E., Jen, W. & Acerce, M. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2 . Appl. Phys. Lett. 2, 092516 (2014).

    Google Scholar 

  28. 28

    Guo, Y. et al. Study on the resistance distribution at the contact between molybdenum disulfide and metals. ACS Nano 8, 7771–7779 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature Mater. 13, 1128–1134 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Schmidt, H. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 14, 1909–1913 (2014).

    CAS  Article  Google Scholar 

  31. 31

    Yu, Z. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nature Commun. 5, 5290 (2014).

    CAS  Article  Google Scholar 

  32. 32

    Zhu, W. et al. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nature Commun. 5, 3078 (2014).

    Article  Google Scholar 

  33. 33

    Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nature Commun. 4, 2642 (2013).

    Article  Google Scholar 

  34. 34

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Roy, T. et al. Field-effect transistors built from all two-dimensional material components. ACS Nano 8, 6256–6264 (2014).

    Article  Google Scholar 

  36. 36

    Haigh, S., Gholinia, A., Jalil, R., Romani, S. & Britnell, L. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nature Mater. 11, 764–767 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Du, Y., Yang, L., Liu, H. & Ye, P. Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors. APL Mater. 2, 092510 (2014).

    Article  Google Scholar 

  39. 39

    Das, S. & Appenzeller, J. Where does the current flow in two-dimensional layered systems? Nano Lett. 13, 3396–3402 (2013).

    CAS  Article  Google Scholar 

  40. 40

    Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).

    CAS  Article  Google Scholar 

  41. 41

    Liu, H. et al. Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. ACS Nano 8, 1031–1038 (2013).

    Article  Google Scholar 

  42. 42

    Fivaz, R. & Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743755 (1967).

    Article  Google Scholar 

  43. 43

    Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    CAS  Article  Google Scholar 

  44. 44

    Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    CAS  Article  Google Scholar 

  45. 45

    Sarma, D., Adam, S., Hwang, E. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article  Google Scholar 

  46. 46

    Neal, A., Liu, H., Gu, J. & Ye, P. Magneto-transport in MoS2: phase coherence, spin–orbit scattering, and the hall factor. ACS Nano 7, 7077–1082 (2013).

    CAS  Article  Google Scholar 

  47. 47

    Stern, F. & Howad, W. E. Properties of semiconductor surface inversion layers in the electric quantum limit. Phys. Rev. 163, 816–835 (1967).

    CAS  Article  Google Scholar 

  48. 48

    Novoselov, K. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  49. 49

    Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).

    CAS  Article  Google Scholar 

  50. 50

    Liu, G-B., Shan, W-Y., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013).

    Article  Google Scholar 

Download references


This research was supported by the US National Science Foundation (NSF, DMR-1122594), the NSF MRSEC programme through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634) and in part by the FAME Center, one of six centres of STARnet, a Semiconductor Research Corporation programme sponsored by MARCO and DARPA. G-H.L. was supported by the Basic Science Research Program (NRF-2014R1A1A1004632) through the National Research Foundation (NRF) funded by the Korean government Ministry of Science, ICT and Future Planning, and in part by the Yonsei University Future-Leading Research Initiative of 2014. P.Y.H. acknowledges support from the NSF Graduate Research Fellowship Program under grant DGE-0707428. Additional support was provided through funding and shared facilities via the Cornell Center for Materials Research NSF MRSEC programme (DMR-1120296). C.-H.L. was supported by Basic Science Research Program (NRF-2014R1A1A2055112) through the National Research Foundation (NRF) funded by the Korean Government Ministry of Education, and in part by the Korea Institute of Science and Technology Institutional Program (2Z04490). F.P. and B.S.J. acknowledge support from the Center for Nanostructured Graphene (CNG), which is funded by the Danish National Research Foundation (Project DNRF58). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT, Japan. T.T. acknowledges support from a Grant-in-Aid for Scientific Research (grant no. 262480621) and Innovative Areas ‘NanoInformatics’ (grant no. 25106006) from JSPS. The high magnetic field measurements were performed at NHMFL. The authors thank A. Suslov, B.J. Pullum, J. Billings and T. Murphy for assistance with the experiments at NHMFL.

Author information




X.C. and G-H.L. designed the research project and supervised the experiment. X.C., G-H.L., Y.D.K., G.A., C-H.L., F.Y., F.P., B.S.J. and L.W. fabricated the devices. X.C., G-H.L. and Y.D.K. performed device measurements with supervision from P.K. and J.H. X.C., G-H.L., G.A. and X.Z. performed optical spectroscopy and data analysis. D.A.C. grew and prepared the CVD MoS2 sample. T.L. performed theoretical calculations. K.W. and T.T. prepared hBN samples. P.Y.H. and D.A.M. performed TEM analyses. X.C., G-H.L., Y.D.K. and J.H. analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Gwan-Hyoung Lee or James Hone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2633 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Lee, GH., Kim, Y. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotech 10, 534–540 (2015).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research