Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices

Abstract

The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dipolar response in small plasmonic nanoparticles.
Figure 2: Structural characterization of DNA–nanoparticle superlattices.
Figure 3: Optical measurements and electrodynamics simulations of DNA–nanoparticle superlattices.
Figure 4: Crystal habit as a material design parameter for plasmonic superlattices.

References

  1. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

    Article  CAS  Google Scholar 

  2. Jones, M. R. et al. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111, 3736–3827 (2011).

    Article  CAS  Google Scholar 

  3. Hess, O. et al. Active nanoplasmonic metamaterials. Nature Mater. 11, 573–584 (2012).

    Article  CAS  Google Scholar 

  4. Elghanian, R. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    Article  CAS  Google Scholar 

  5. Kabashin, A. V. et al. Plasmonic nanorod metamaterials for biosensing. Nature Mater. 8, 867–871 (2009).

    Article  CAS  Google Scholar 

  6. Esfandyarpour, M. et al. Metamaterial mirrors in optoelectronic devices. Nature Nanotech. 9, 542–547 (2014).

    Article  CAS  Google Scholar 

  7. Bergman, D. & Stockman, M. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Article  Google Scholar 

  8. Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotech. 8, 506–511 (2013).

    Article  CAS  Google Scholar 

  9. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  10. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  11. Cheng, W. L. et al. Free-standing nanoparticle superlattice sheets controlled by DNA. Nature Mater. 8, 519–525 (2009).

    Article  CAS  Google Scholar 

  12. Mazid, R. R., Si, K. J. & Cheng, W. DNA based strategy to nanoparticle superlattices. Methods 67, 215–226 (2014).

    Article  CAS  Google Scholar 

  13. Tan, S. J., Campolongo, M. J., Luo, D. & Cheng, W. Building plasmonic nanostructures with DNA. Nature Nanotech. 6, 268–276 (2011).

    Article  CAS  Google Scholar 

  14. Cutler, J. I., Auyeung, E. & Mirkin, C. A. Spherical nucleic acids. J. Am. Chem. Soc. 134, 1376–1391 (2012).

    Article  CAS  Google Scholar 

  15. Macfarlane, R. J., O'Brien, M. N., Petrosko, S. H. & Mirkin, C. A. Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new ‘table of elements’. Angew. Chem. Int. Ed. 52, 5688–5698 (2013).

    Article  CAS  Google Scholar 

  16. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  17. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  18. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article  CAS  Google Scholar 

  19. Zhang, C. et al. A general approach to DNA-programmable atom equivalents. Nature Mater. 12, 741–746 (2013).

    Article  CAS  Google Scholar 

  20. Young, K. L. et al. Using DNA to design plasmonic metamaterials with tunable optical properties. Adv. Mater. 26, 653–659 (2014).

    Article  CAS  Google Scholar 

  21. Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2013).

    Article  CAS  Google Scholar 

  22. Senesi, A. J. et al. Stepwise evolution of DNA-programmable nanoparticle superlattices. Angew. Chem. Int. Ed. 52, 6624–6628 (2013).

    Article  CAS  Google Scholar 

  23. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  CAS  Google Scholar 

  24. Eustis, S. & El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006).

    Article  CAS  Google Scholar 

  25. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    Article  CAS  Google Scholar 

  26. Haes, A. J. et al. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 30, 368–375 (2011).

    Article  Google Scholar 

  27. Howes, P. D., Chandrawati, R. & Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science 346, 1247390 (2014).

    Article  Google Scholar 

  28. Seferos, D. S. et al. Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 129, 15477–15479 (2007).

    Article  CAS  Google Scholar 

  29. Sheikholeslami, S. N., Alaeian, H., Koh, A. L. & Dionne, J. A. A metafluid exhibiting strong optical magnetism. Nano Lett. 13, 4137–4141 (2013).

    Article  CAS  Google Scholar 

  30. Ye, X. C., Chen, J., Diroll, B. T. & Murray, C. B. Tunable plasmonic coupling in self-assembled binary nanocrystal super lattices studied by correlated optical microspectrophotometry and electron microscopy. Nano Lett. 13, 1291–1297 (2013).

    Article  CAS  Google Scholar 

  31. Tao, A., Sinsermsuksakul, P. & Yang, P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotech. 2, 435–440 (2007).

    Article  CAS  Google Scholar 

  32. Gao, B., Arya, G. & Tao, A. R. Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nature Nanotech. 7, 433–437 (2012).

    Article  CAS  Google Scholar 

  33. Ng, K. C. et al. Free-standing plasmonic-nanorod superlattice sheets. ACS Nano 6, 925–934 (2012).

    Article  CAS  Google Scholar 

  34. Si, K. J. et al. Giant plasmene nanosheets, nanoribbons, and origami. ACS Nano 8, 11086–11093 (2014).

    Article  CAS  Google Scholar 

  35. Ross, M. B., Blaber, M. G. & Schatz, G. C. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nature Commun. 5, 4090 (2014).

    Article  CAS  Google Scholar 

  36. Henzie, J. et al. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nature Mater. 11, 131–137 (2012).

    Article  CAS  Google Scholar 

  37. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  38. Rupich, S. M. et al. Size-dependent multiple twinning in nanocrystal superlattices. J. Am. Chem. Soc. 132, 289–296 (2010).

    Article  CAS  Google Scholar 

  39. Wang, T. et al. Self-assembled colloidal superparticles from nanorods. Science 338, 358–363 (2012).

    Article  CAS  Google Scholar 

  40. Xia, Y. S. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nature Nanotech. 7, 479–479 (2012).

    Article  CAS  Google Scholar 

  41. Lazarides, A. A. & Schatz, G. C. DNA-linked metal nanosphere materials: structural basis for the optical properties. J. Phys. Chem. B 104, 460–467 (2000).

    Article  CAS  Google Scholar 

  42. Storhoff, J. J. et al. What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122, 4640–4650 (2000).

    Article  CAS  Google Scholar 

  43. Auyeung, E. et al. Transitioning DNA-engineered nanoparticle superlattices from solution to the solid state. Adv. Mater. 24, 5181–5186 (2012).

    Article  CAS  Google Scholar 

  44. Lazarides, A. A. & Schatz, G. C. DNA-linked metal nanosphere materials: Fourier-transform solutions for the optical response. J. Chem. Phys. 112, 2987–2993 (2000).

    Article  CAS  Google Scholar 

  45. Rycenga, M., McLellan, J. M. & Xia, Y. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater. 20, 2416–2420 (2008).

    Article  CAS  Google Scholar 

  46. Greenberg, J., Pedersen, N. E. & Pedersen, J. C. Microwave analog to scattering of light by nonspherical particles. J. Appl. Phys. 32, 233 (1961).

    Article  Google Scholar 

  47. van de Hulst, H. C. Light scattering by small particles (Wiley, 1957).

    Book  Google Scholar 

  48. Lind, A. C. & Wang, R. T. & Greenberg, J. M. Microwave scattering by nonspherical particles. Appl. Opt. 4, 1555 (1965).

    Article  Google Scholar 

  49. Maslowska, A., Flatau, P. J. & Stephens, G. L. On the validity of the anomalous diffraction theory to light-scattering by cubes. Opt. Commun. 107, 35–40 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by an AFOSR MURI grant (FA9550-11-1-0275), by the Northwestern Materials Research Center (NSF grant DMR-1121262) and by the Center for Bio-Inspired Energy Science (CBES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award DE-SC0000989-0002. M.B.R. and J.C.K. acknowledge support from the NDSEG graduate fellowship programme. Computational time was provided by the Quest High-Performance Computing facility at Northwestern University, which is jointly supported by the Office of the Provost, the Office for Research, and Northwestern University Information Technology. SAXS experiments were carried out at the Dupont–Northwestern–Dow Collaborative Access Team beamline at the Advanced Photon Source (APS), Argonne National Laboratory, and use of the APS was supported by the DOE (DE-AC02-06CH11357). GISAXS experiment were carried out at beamline 12-ID-B at the APS. This work made use of the EPIC facility (NUANCE Center-Northwestern University), which has received support from the MRSEC programme (NSF DMR-1121262) at the Materials Research Center, the International Institute for Nanotechnology (IIN); and the State of Illinois, through the IIN. The authors also thank Y. Kim for assistance with SAXS measurements.

Author information

Authors and Affiliations

Authors

Contributions

M.B.R. designed the systems, collected and analysed data, and wrote the manuscript. J.C.K. designed the systems and collected and analysed data. V.M.V. collected data. G.C.S. and C.A.M. designed the systems, analysed the data, and wrote the manuscript.

Corresponding authors

Correspondence to George C. Schatz or Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, M., Ku, J., Vaccarezza, V. et al. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nature Nanotech 10, 453–458 (2015). https://doi.org/10.1038/nnano.2015.68

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.68

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research