Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2

Abstract

Continued progress in high-speed computing depends on breakthroughs in both materials synthesis and device architectures1,2,3,4. The performance of logic and memory can be enhanced significantly by introducing a memristor5,6, a two-terminal device with internal resistance that depends on the history of the external bias voltage5,6,7. State-of-the-art memristors, based on metal–insulator–metal (MIM) structures with insulating oxides, such as TiO2, are limited by a lack of control over the filament formation and external control of the switching voltage3,4,6,8,9. Here, we report a class of memristors based on grain boundaries (GBs) in single-layer MoS2 devices10,11,12. Specifically, the resistance of GBs emerging from contacts can be easily and repeatedly modulated, with switching ratios up to 103 and a dynamic negative differential resistance (NDR). Furthermore, the atomically thin nature of MoS2 enables tuning of the set voltage by a third gate terminal in a field-effect geometry, which provides new functionality that is not observed in other known memristive devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IV characteristics of MoS2 memristors.
Figure 2: GB migration.
Figure 3: EFM and spatially resolved PL images.
Figure 4: Gate-tunability of an intersecting-GB and a bisecting-GB memristor.

Similar content being viewed by others

References

  1. Linn, E., Rosezin, R., Kügeler, C. & Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nature Mater. 9, 403–406 (2010).

    Article  CAS  Google Scholar 

  2. Theis, T. N. & Solomon, P. M. In quest of the next switch: prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor. Proc. IEEE 98, 2005–2014 (2010).

    Article  Google Scholar 

  3. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  4. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nature Nanotech. 8, 13–24 (2013).

    Article  CAS  Google Scholar 

  5. Chua, L. Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article  Google Scholar 

  6. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  7. Chua, L. Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011).

    Article  CAS  Google Scholar 

  8. Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).

    Article  CAS  Google Scholar 

  9. Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotech. 3, 429–433 (2008).

    Article  CAS  Google Scholar 

  10. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).

    Article  CAS  Google Scholar 

  11. van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013).

    Article  CAS  Google Scholar 

  12. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    CAS  Google Scholar 

  13. Pickett, M. D., Borghetti, J., Yang, J. J., Medeiros-Ribeiro, G. & Williams, R. S. Coexistence of memristance and negative differential resistance in a nanoscale metal–oxide–metal system. Adv. Mater. 23, 1730–1733 (2011).

    Article  CAS  Google Scholar 

  14. Xia, Y., He, W., Chen, L., Meng, X. & Liu, Z. Field-induced resistive switching based on space-charge-limited current. Appl. Phys. Lett. 90, 022907 (2007).

    Article  Google Scholar 

  15. Ghatak, S. & Ghosh, A. Observation of trap-assisted space charge limited conductivity in short channel MoS2 transistor. Appl. Phys. Lett. 103, 122103 (2013).

    Article  Google Scholar 

  16. Azizi, A. et al. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nature Commun. 5, 4867 (2014).

    Article  CAS  Google Scholar 

  17. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Mater. 12, 754–759 (2013).

    Article  CAS  Google Scholar 

  18. Chen, M. et al. Multibit data storage states formed in plasma-treated MoS2 transistors. ACS Nano 8, 4023–4032 (2014).

    Article  CAS  Google Scholar 

  19. Kim, I. S. et al. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2 . ACS Nano 8, 10551–10558 (2014).

    Article  CAS  Google Scholar 

  20. Nan, H. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 5738–5745 (2014).

    Article  CAS  Google Scholar 

  21. Shen, X., Puzyrev, Y. S. & Pantelides, S. T. Vacancy breathing by grain boundaries—a mechanism of memristive switching in polycrystalline oxides. MRS Commun. 3, 167–170 (2013).

    Article  CAS  Google Scholar 

  22. Kim, S., Choi, S. & Lu, W. Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano 8, 2369–2376 (2014).

    Article  CAS  Google Scholar 

  23. Jariwala, D. et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett. 102, 173107 (2013).

    Article  Google Scholar 

  24. Najmaei, S. et al. Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 8, 7930–7937 (2014).

    Article  CAS  Google Scholar 

  25. Chang, S. et al. Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 102, 026801 (2009).

    Article  CAS  Google Scholar 

  26. Yang, Y., Sheridan, P. & Lu, W. Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 100, 203112 (2012).

    Article  Google Scholar 

  27. Park, J-W. et al. Resistive switching characteristics and set-voltage dependence of low-resistance state in sputter-deposited SrZrO3:Cr memory films. J. Appl. Phys. 99, 124102 (2006).

    Article  Google Scholar 

  28. Aoki, Y. et al. Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour. Nature Commun. 5, 3473 (2014).

  29. Likharev, K. K. Hybrid CMOS/nanoelectronic circuits: opportunities and challenges. J. Nanoelectron. Optoelectron. 3, 203–230 (2008).

    Article  Google Scholar 

  30. Linn, E., Rosezin, R., Tappertzhofen, S., Böttger, U. & Waser, R. Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23, 305205 (2012).

    Article  CAS  Google Scholar 

  31. Snider, G. S. Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18, 365202 (2007).

    Article  Google Scholar 

  32. Xia, Q. et al. Memristor−CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640–3645 (2009).

    Article  CAS  Google Scholar 

  33. Sangwan, V. K. et al. Low-frequency electronic noise in single-layer MoS2 transistors. Nano Lett. 13, 4351–4355 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Materials Research Science and Engineering Center (MRSEC) of Northwestern University (NSF DMR-1121262) and the Office of Naval Research (N00014-14-1-0669). This work made use of the Electron Probe Instrumentation Center facility (Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University), which has received support from the MRSEC (NSF DMR-1121262), Nanoscale Science and Engineering Center (NSF EEC-0118025/003), State of Illinois and Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

V.K.S., T.J.M., L.J.L. and M.C.H. designed the experiments. V.K.S. and D.J. fabricated and measured the devices. I.S.K. performed the CVD, photoluminescence and Raman microscopy. V.K.S. and K-S.C. conducted the scanning probe microscopy (AFM/EFM) measurements. All authors wrote the manuscript and discussed the results at all stages.

Corresponding authors

Correspondence to Lincoln J. Lauhon or Mark C. Hersam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangwan, V., Jariwala, D., Kim, I. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nature Nanotech 10, 403–406 (2015). https://doi.org/10.1038/nnano.2015.56

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.56

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing