Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating

Abstract

Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies have addressed the general operation of graphene-based photothermoelectric devices and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster timescale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 fs. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 fs laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity of between 500 and 1,500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hot electron dynamics and their experimental extraction.
Figure 2: Femtosecond sensing of hot electrons.
Figure 3: Spectral response.
Figure 4: Electron heating efficiency.

Similar content being viewed by others

References

  1. Wei, P., Bao, W., Pu, Y., Lau, C. N. & Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009).

    Article  Google Scholar 

  2. Xu, X. et al. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  CAS  Google Scholar 

  3. Song, J. C. W. et al. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  CAS  Google Scholar 

  4. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  CAS  Google Scholar 

  5. Koppens, F. J. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech. 9, 780–793 (2014).

    Article  CAS  Google Scholar 

  6. Freitag, M., Low, T. & Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 13, 1644 (2013).

    Article  CAS  Google Scholar 

  7. Echtermeyer, T. J. et al. Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors. Nano Lett. 14, 3733–3742 (2014).

    Article  CAS  Google Scholar 

  8. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  9. Cai, X. et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nature Nanotech. 9, 814–819 (2014).

    Article  CAS  Google Scholar 

  10. George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8, 4248–4251 (2008).

    Article  CAS  Google Scholar 

  11. Lui, C. H. et al. Ultrafast photoluminscence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    Article  Google Scholar 

  12. Breusing, M. et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 83, 153410 (2011).

    Article  Google Scholar 

  13. Johannsen, J. C. et al. Direct view on the ultrafast carrier dynamics in graphene. Phys. Rev. Lett. 11, 027403 (2013).

    Article  Google Scholar 

  14. Gierz, I. et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nature Mater. 12, 1119–1124 (2013).

    Article  CAS  Google Scholar 

  15. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Commun. 4, 1987 (2013).

    Article  CAS  Google Scholar 

  16. Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Phys. 9, 248–252 (2013).

    Article  CAS  Google Scholar 

  17. Jensen, S. et al. Competing ultrafast energy relaxation pathways in photoexcited graphene. Nano Lett. 14, 5839–5845 (2014).

    Article  CAS  Google Scholar 

  18. Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    Article  CAS  Google Scholar 

  19. Sun, D. et al. Ultrafast hot-carrier-dominated photovoltage in graphene. Nature Nanotech. 7, 114–118 (2012).

    Article  CAS  Google Scholar 

  20. Graham, M. W., Shi, S-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nature Phys. 9, 103–108 (2013).

    Article  CAS  Google Scholar 

  21. Xia, F., Mueller, T., Lin, Y., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    Article  CAS  Google Scholar 

  22. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  CAS  Google Scholar 

  23. Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photon. 7, 883–887 (2013).

    Article  CAS  Google Scholar 

  24. Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photon. 7, 892–896 (2013).

    Article  CAS  Google Scholar 

  25. Schall, D. et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photon. 1, 781–784 (2014).

    Article  CAS  Google Scholar 

  26. Sze, S. M. Physics of Semiconductor Devices (Wiley, 1969).

    Google Scholar 

  27. Kittel, C. Introduction to Solid State Physics (Wiley, 2005).

    Google Scholar 

  28. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  Google Scholar 

  29. Winzer, T., Knorr, A. & Malić, E. Carrier multiplication in graphene. Nano Lett. 10, 4839–4843 (2010).

    Article  CAS  Google Scholar 

  30. Song, J. C. W. et al. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Phys. Rev. B 87, 155429 (2013).

    Article  Google Scholar 

  31. Ma, Q. et al. Competing channels for hot-electron cooling in graphene. Phys. Rev. Lett. 112, 247401 (2014).

    Article  Google Scholar 

  32. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  33. Freitag, M., Low, T. & Avouris, Ph. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2013).

    Article  CAS  Google Scholar 

  34. Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472–478 (2012).

    Article  CAS  Google Scholar 

  35. Son, B. H. et al. Imaging ultrafast carrier transport in nanoscale field-effect transistors. ACS Nano 8, 11361–11368 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Song, L. Levitov and D. Brinks for discussions. K.J.T. acknowledges NWO for a Rubicon fellowship. L.P. acknowledges financial support from the Marie-Curie International Fellowship COFUND and the ICFOnest programme. F.K. acknowledges support by the Fundacio Cellex Barcelona, an ERC Career integration grant (294056, GRANOP) and ERC starting grant (307806, CarbonLight) and support by the EC under the Graphene Flagship (contract no. CNECT-ICT-604391). N.v.H. acknowledges support from an ERC advanced grant (ERC247330). Q.M. and P.J.H. have been supported by the AFOSR (grant no. FA9550-11-1-0225) and a Packard Fellowship. This work made use of the Materials Research Science and Engineering Center Shared Experimental Facilities supported by the National Science Foundation (NSF) (grant no. DMR-0819762) and Harvard's Center for Nanoscale Systems, supported by the NSF (grant no. ECS-0335765). Y.L., K.S.M. and C.N.L. are supported by the DOE BES division under grant no. ER 46940-DE-SC0010597. C.N.L. acknowledges support from the CONSEPT Center at UCR.

Author information

Authors and Affiliations

Authors

Contributions

K.J.T., F.H.L.K., N.v.H. and P.J.H. conceived the experiments. K.J.T., L.P. and M.M. carried out the experiments. K.J.T., M.M., L.P. and F.H.L.K. performed the data analysis. Q.M., M.M., Y.L. and C.N.L. fabricated the samples. K.J.T. and A.W. performed simulations. K.J.T., F.H.L.K., N.v.H. and P.J.H. wrote the manuscript, with the participation of all authors.

Corresponding authors

Correspondence to K. J. Tielrooij, N. F. van Hulst or F. H. L. Koppens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tielrooij, K., Piatkowski, L., Massicotte, M. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nature Nanotech 10, 437–443 (2015). https://doi.org/10.1038/nnano.2015.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing