Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials

Abstract

Efficient intercalation of ions in layered materials forms the basis of electrochemical energy storage devices such as batteries and capacitors1,2,3,4,5,6. Recent research has focused on the exfoliation of layered materials and then restacking the two-dimensional exfoliated nanosheets to form electrodes with enhanced electrochemical response7,8,9,10,11. Here, we show that chemically exfoliated nanosheets of MoS2 containing a high concentration of the metallic 1T phase can electrochemically intercalate ions such as H+, Li+, Na+ and K+ with extraordinary efficiency and achieve capacitance values ranging from 400 to 700 F cm−3 in a variety of aqueous electrolytes. We also demonstrate that this material is suitable for high-voltage (3.5 V) operation in non-aqueous organic electrolytes, showing prime volumetric energy and power density values, coulombic efficiencies in excess of 95%, and stability over 5,000 cycles. As we show by X-ray diffraction analysis, these favourable electrochemical properties of 1T MoS2 layers are mainly a result of their hydrophilicity and high electrical conductivity, as well as the ability of the exfoliated layers to dynamically expand and intercalate the various ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemically exfoliated 1T MoS2 electrodes.
Figure 2: Electrochemical characterization of 1T phase MoS2 electrodes in different electrolytes.
Figure 3: Electrochemical behaviour of 1T phase MoS2 electrodes in organic electrolytes.
Figure 4: Ex situ XRD spectra from restacked 1T phase MoS2 films.

Similar content being viewed by others

References

  1. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008).

    Article  CAS  Google Scholar 

  2. Conway, B. E. Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage. J. Electrochem. Soc. 138, 1539 (1991).

    Article  CAS  Google Scholar 

  3. Ghidiu, M., Lukatskaya, M. R., Zhao, M-Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    Article  CAS  Google Scholar 

  4. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  CAS  Google Scholar 

  5. Yoo, E. et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008).

    Article  CAS  Google Scholar 

  6. Mai, L. et al. Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor. Sci. Rep. 3, 1718 (2013).

    Article  Google Scholar 

  7. Stoller, M. D., Park, S., Zhu, Y., An, J. & Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008).

    Article  CAS  Google Scholar 

  8. Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    Article  CAS  Google Scholar 

  9. Zhu, Y. et al. Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011).

    Article  CAS  Google Scholar 

  10. Feng, J. et al. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 133, 17832–17838 (2011).

    Article  CAS  Google Scholar 

  11. Du, G. et al. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 46, 1106 (2010).

    Article  CAS  Google Scholar 

  12. Tao, Y. et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013).

    Article  Google Scholar 

  13. Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013).

    Article  CAS  Google Scholar 

  14. Soon, J. M. & Loh, K. P. Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem. Solid-State Lett. 10, A250 (2007).

    Article  CAS  Google Scholar 

  15. Cao, L. et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 9, 2905–2910 (2013).

    Article  CAS  Google Scholar 

  16. Da Silveira Firmiano, E. G. et al. Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 4, 1301380 (2014).

    Article  Google Scholar 

  17. Huang, K-J. et al. Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim. Acta 109, 587–594 (2013).

    Article  CAS  Google Scholar 

  18. Ramadoss, A., Kim, T., Kim, G-S. & Kim, S. J. Enhanced activity of a hydrothermally synthesized mesoporous MoS2 nanostructure for high performance supercapacitor applications. New J. Chem. 38, 2379 (2014).

    Article  CAS  Google Scholar 

  19. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  20. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  Google Scholar 

  21. Papageorgopoulos, C. A. & Jaegermann, W. Li intercalation across and along the van der Waals surfaces of MoS2(0001). Surf. Sci. 338, 83–93 (1995).

    Article  CAS  Google Scholar 

  22. Joensen, P., Crozier, E. D., Alberding, N. & Frindt, R. F. A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy. J. Phys. C 20, 4043–4053 (1987).

    Article  CAS  Google Scholar 

  23. Heising, J. & Kanatzidis, M. G. Exfoliated and restacked MoS2 and WS2: ionic or neutral species? encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 121, 11720–11732 (1999).

    Article  CAS  Google Scholar 

  24. Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    Article  CAS  Google Scholar 

  25. Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    Article  CAS  Google Scholar 

  26. Zheng, N., Bu, X. & Feng, P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity. Nature 426, 428–432 (2003).

    Article  CAS  Google Scholar 

  27. Wu, Z., Parvez, K., Feng, X. & Müllen, K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Commun. 4, 2487 (2013).

    Article  Google Scholar 

  28. Schöllhorn, R. & Weiss, A. Cation exchange reactions and layer solvate complexes of ternary phases MxMoS2 . J. Common Met. 36, 229–236 (1974).

    Article  Google Scholar 

  29. Alexiev, V., Meyer zu Altenschildesche, H., Prins, R. & Weber, T. Solid-state NMR study of hydrated intercalation compounds of molybdenum disulfide. Chem. Mater. 11, 1742–1746 (1999).

    Article  CAS  Google Scholar 

  30. Palomo, J. Competitive absorption of quaternary ammonium and alkali metal cations into a Nafion cation-exchange membrane. J. Membr. Sci. 215, 103–114 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.C. and D.V. acknowledge financial support from the National Science Foundation (NSF DGE 0903661) and the Division of Electrical, Communications and Cyber Systems (1128335). M.A. acknowledges support from the Turkish Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

M.C. and M.A. conceived the idea and designed the experiments. M.A. synthesized the materials, carried out the electrochemical measurements, performed XRD analyses and assisted D.V. with XPS. D.V. assisted in materials synthesis, and performed Raman, XPS and SEM measurements. M.C. wrote the manuscript with assistance from M.A. and D.V. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Manish Chhowalla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nature Nanotech 10, 313–318 (2015). https://doi.org/10.1038/nnano.2015.40

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.40

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing