Abstract
By creating nanoscale pores in a layer of graphene, it could be used as an effective separation membrane due to its chemical and mechanical stability, its flexibility and, most importantly, its one-atom thickness. Theoretical studies have indicated that the performance of such membranes should be superior to state-of-the-art polymer-based filtration membranes, and experimental studies have recently begun to explore their potential. Here, we show that single-layer porous graphene can be used as a desalination membrane. Nanometre-sized pores are created in a graphene monolayer using an oxygen plasma etching process, which allows the size of the pores to be tuned. The resulting membranes exhibit a salt rejection rate of nearly 100% and rapid water transport. In particular, water fluxes of up to 106 g m−2 s−1 at 40 °C were measured using pressure difference as a driving force, while water fluxes measured using osmotic pressure as a driving force did not exceed 70 g m−2 s−1 atm−1.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Change history
14 October 2016
In the version of this Article originally published, the water flux calculated from simulations in ref. 28 was incorrectly stated as 1.7 × 10−12 g s−1 bar−1 per pore; the correct value is 1.7 × 10−15 g s−1 bar−1 per pore. Sentences in the main text related to this value and the comparison to experimental results have been amended. This does not change the experimental results or conclusions. This error has been corrected in the online versions of the Article.
References
Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).
Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).
Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).
Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).
Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).
Jiang, D-E., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009).
Konatham, D., Yu, J., Ho, T. A. & Striolo, A. Simulation insights for graphene-based water desalination membranes. Langmuir 29, 11884–11897 (2013).
Suk, M. E. & Aluru, N. R. Water transport through ultrathin graphene. J. Phys. Chem. Lett. 1, 1590–1594 (2010).
Du, H. et al. Separation of hydrogen and nitrogen gases with porous graphene membrane. J. Phys. Chem. C 115, 23261–23266 (2011).
Sint, K., Wang, B. & Kral, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 130, 16448–16449 (2008).
Sun, C. et al. Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir 30, 675–682 (2014).
Wang, E. N. & Karnik, R. Water desalination graphene cleans up water. Nature Nanotech. 7, 552–554 (2012).
Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nature Nanotech. 7, 728–732 (2012).
Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).
Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013).
Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).
Shan, Y. P. et al. Surface modification of graphene nanopores for protein translocation. Nanotechnology 24, 495102 (2013).
O'Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).
O'Hern, S. C. et al. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6, 10130–10138 (2012).
Vlassiouk, I. et al. Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54, 58–67 (2013).
Vlassiouk, I., Apel, P. Y., Dmitriev, S. N., Healy, K. & Siwy, Z. S. Versatile ultrathin nanoporous silicon nitride membranes. Proc. Natl Acad. Sci. USA 106, 21039–21044 (2009).
Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).
Vlassiouk, I. et al. Graphene nucleation density on copper: fundamental role of background pressure. J. Phys. Chem. C 117, 18919–18926 (2013).
Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010).
Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).
Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).
Smirnov, S. N., Vlassiouk, I. V. & Lavrik, N. V. Voltage-gated hydrophobic nanopores. ACS Nano 5, 7453–7461 (2011).
Cohen-Tanugi, D. & Grossman, J. C. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. J. Chem. Phys. 141, 074704 (2014).
Goosen, M. F. A. et al. Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Sep. Sci. Technol. 39, 2261–2297 (2004).
Guo, J. et al. Crown ethers in graphene. Nature Commun. 5, 5389 (2014).
Lee, J. et al. Stabilization of graphene nanopore. Proc. Natl Acad. Sci. USA 111, 7522–7526 (2014).
Surwade, S. P., Li, Z. T. & Liu, H. T. Thermal oxidation and unwrinkling of chemical vapor deposition-grown graphene. J. Phys. Chem. C 116, 20600–20606 (2012).
Liu, L. et al. Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965–1970 (2008).
Diankov, G., Neumann, M. & Goldhaber-Gordon, D. Extreme mono layer-selectivity of hydrogen-plasma reactions with graphene. ACS Nano 7, 1324–1332 (2013).
Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).
Wang, B., Puzyrev, Y. & Pantelides, S. T. Strain enhanced defect reactivity at grain boundaries in polycrystalline graphene. Carbon 49, 3983–3988 (2011).
Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Nanoscale hydrodynamics—enhanced flow in carbon nanotubes. Nature 438, 44–44 (2005).
Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).
Severin, N., Lange, P., Sokolov, I. M. & Rabe, J. P. Reversible dewetting of a molecularly thin fluid water film in a soft graphene-mica slit pore. Nano Lett. 12, 774–779 (2012).
Datta, D., Li, J. W. & Shenoy, V. B. Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 6, 1788–1795 (2014).
Acknowledgements
Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. Research also supported through a user proposal at ORNL's Center for Nanophase Materials Sciences (CNMS), which is a US Department of Energy, Office of Science User Facility.
Author information
Authors and Affiliations
Contributions
S.P.S. performed water transport experiments and plasma treatment. I.V.V. performed membrane preparation and ionic transport measurements. R.R.U. performed the aberration-corrected STEM. G.M.V. performed X-ray photoelectron spectroscopy measurements and analysed the results. S.M.M., I.V.V. and S.D. conceived the idea and designed the experiments. I.V.V., S.M.M., S.P.S., S.N.S. and S.D. analysed the data and interpreted the results. All authors contributed to the writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 2492 kb)
Rights and permissions
About this article
Cite this article
Surwade, S., Smirnov, S., Vlassiouk, I. et al. Water desalination using nanoporous single-layer graphene. Nature Nanotech 10, 459–464 (2015). https://doi.org/10.1038/nnano.2015.37
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2015.37
This article is cited by
-
Towards the realisation of high permi-selective MoS2 membrane for water desalination
npj Clean Water (2023)
-
An integrated system with functions of solar desalination, power generation and crop irrigation
Nature Water (2023)
-
Comprehensive review of low pull-in voltage RF NEMS switches
Microsystem Technologies (2023)
-
Ultra-hydrophilic nanofiltration membranes fabricated via punching in the HTO nanosheets
Advanced Composites and Hybrid Materials (2023)
-
Modelling of ionized and non-ionized carbon nanotubes used as selective nano-platforms for water desalination
Applied Nanoscience (2023)