Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Water desalination using nanoporous single-layer graphene

A Corrigendum to this article was published on 08 November 2016

This article has been updated


By creating nanoscale pores in a layer of graphene, it could be used as an effective separation membrane due to its chemical and mechanical stability, its flexibility and, most importantly, its one-atom thickness. Theoretical studies have indicated that the performance of such membranes should be superior to state-of-the-art polymer-based filtration membranes, and experimental studies have recently begun to explore their potential. Here, we show that single-layer porous graphene can be used as a desalination membrane. Nanometre-sized pores are created in a graphene monolayer using an oxygen plasma etching process, which allows the size of the pores to be tuned. The resulting membranes exhibit a salt rejection rate of nearly 100% and rapid water transport. In particular, water fluxes of up to 106 g m−2 s−1 at 40 °C were measured using pressure difference as a driving force, while water fluxes measured using osmotic pressure as a driving force did not exceed 70 g m−2 s−1 atm−1.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Porous graphene membranes.
Figure 2: Water transport measurements and desalination experiments.
Figure 3: Characterization of nanoporous graphene.

Change history

  • 14 October 2016

    In the version of this Article originally published, the water flux calculated from simulations in ref. 28 was incorrectly stated as 1.7 × 10−12 g s−1 bar−1 per pore; the correct value is 1.7 × 10−15 g s−1 bar−1 per pore. Sentences in the main text related to this value and the comparison to experimental results have been amended. This does not change the experimental results or conclusions. This error has been corrected in the online versions of the Article.


  1. 1

    Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Jiang, D-E., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Konatham, D., Yu, J., Ho, T. A. & Striolo, A. Simulation insights for graphene-based water desalination membranes. Langmuir 29, 11884–11897 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Suk, M. E. & Aluru, N. R. Water transport through ultrathin graphene. J. Phys. Chem. Lett. 1, 1590–1594 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Du, H. et al. Separation of hydrogen and nitrogen gases with porous graphene membrane. J. Phys. Chem. C 115, 23261–23266 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Sint, K., Wang, B. & Kral, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 130, 16448–16449 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Sun, C. et al. Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir 30, 675–682 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Wang, E. N. & Karnik, R. Water desalination graphene cleans up water. Nature Nanotech. 7, 552–554 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nature Nanotech. 7, 728–732 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Shan, Y. P. et al. Surface modification of graphene nanopores for protein translocation. Nanotechnology 24, 495102 (2013).

    CAS  Article  Google Scholar 

  18. 18

    O'Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).

    CAS  Article  Google Scholar 

  19. 19

    O'Hern, S. C. et al. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6, 10130–10138 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Vlassiouk, I. et al. Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54, 58–67 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Vlassiouk, I., Apel, P. Y., Dmitriev, S. N., Healy, K. & Siwy, Z. S. Versatile ultrathin nanoporous silicon nitride membranes. Proc. Natl Acad. Sci. USA 106, 21039–21044 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Vlassiouk, I. et al. Graphene nucleation density on copper: fundamental role of background pressure. J. Phys. Chem. C 117, 18919–18926 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Smirnov, S. N., Vlassiouk, I. V. & Lavrik, N. V. Voltage-gated hydrophobic nanopores. ACS Nano 5, 7453–7461 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Cohen-Tanugi, D. & Grossman, J. C. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. J. Chem. Phys. 141, 074704 (2014).

    Article  Google Scholar 

  29. 29

    Goosen, M. F. A. et al. Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Sep. Sci. Technol. 39, 2261–2297 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Guo, J. et al. Crown ethers in graphene. Nature Commun. 5, 5389 (2014).

    CAS  Article  Google Scholar 

  31. 31

    Lee, J. et al. Stabilization of graphene nanopore. Proc. Natl Acad. Sci. USA 111, 7522–7526 (2014).

    CAS  Article  Google Scholar 

  32. 32

    Surwade, S. P., Li, Z. T. & Liu, H. T. Thermal oxidation and unwrinkling of chemical vapor deposition-grown graphene. J. Phys. Chem. C 116, 20600–20606 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Liu, L. et al. Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965–1970 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Diankov, G., Neumann, M. & Goldhaber-Gordon, D. Extreme mono layer-selectivity of hydrogen-plasma reactions with graphene. ACS Nano 7, 1324–1332 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Wang, B., Puzyrev, Y. & Pantelides, S. T. Strain enhanced defect reactivity at grain boundaries in polycrystalline graphene. Carbon 49, 3983–3988 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Nanoscale hydrodynamics—enhanced flow in carbon nanotubes. Nature 438, 44–44 (2005).

    CAS  Article  Google Scholar 

  38. 38

    Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    CAS  Article  Google Scholar 

  39. 39

    Severin, N., Lange, P., Sokolov, I. M. & Rabe, J. P. Reversible dewetting of a molecularly thin fluid water film in a soft graphene-mica slit pore. Nano Lett. 12, 774–779 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Datta, D., Li, J. W. & Shenoy, V. B. Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 6, 1788–1795 (2014).

    CAS  Article  Google Scholar 

Download references


Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. Research also supported through a user proposal at ORNL's Center for Nanophase Materials Sciences (CNMS), which is a US Department of Energy, Office of Science User Facility.

Author information




S.P.S. performed water transport experiments and plasma treatment. I.V.V. performed membrane preparation and ionic transport measurements. R.R.U. performed the aberration-corrected STEM. G.M.V. performed X-ray photoelectron spectroscopy measurements and analysed the results. S.M.M., I.V.V. and S.D. conceived the idea and designed the experiments. I.V.V., S.M.M., S.P.S., S.N.S. and S.D. analysed the data and interpreted the results. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Ivan V. Vlassiouk or Shannon M. Mahurin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2492 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Surwade, S., Smirnov, S., Vlassiouk, I. et al. Water desalination using nanoporous single-layer graphene. Nature Nanotech 10, 459–464 (2015).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research