Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles


Failure of cancer surgery to intraoperatively detect and eliminate microscopic residual disease (MRD) causes lethal recurrence and metastases, and the removal of important normal tissues causes excessive morbidity. Here, we show that a plasmonic nanobubble (PNB), a non-stationary laser pulse-activated nanoevent, intraoperatively detects and eliminates MRD in the surgical bed. PNBs were generated in vivo in head and neck cancer cells by systemically targeting tumours with gold colloids and locally applying near-infrared, low-energy short laser pulses, and were simultaneously detected with an acoustic probe. In mouse models, between 3 and 30 residual cancer cells and MRD (undetectable with current methods) were non-invasively detected up to 4 mm deep in the surgical bed within 1 ms. In resectable MRD, PNB-guided surgery prevented local recurrence and delivered 100% tumour-free survival. In unresectable MRD, PNB nanosurgery improved survival twofold compared with standard surgery. Our results show that PNB-guided surgery and nanosurgery can rapidly and precisely detect and remove MRD in simple intraoperative procedures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mechanism of PNB diagnostics of residual microtumours and cancer cells in vivo.
Figure 2: PNBs report even single cancer cells in vitro in transparent medium and in tissue.
Figure 3: Intraoperative non-invasive detection of cancer cells in a surgical bed in vivo with a single laser pulse.
Figure 4: Biodistribution and toxicity in vivo after systemic administration of gold conjugates reveal a safe and efficient accumulation of gold nanoparticles in a tumour.
Figure 5: PNBs intraoperatively detect MRD in a surgical bed and guide its resection in real time with standard surgery.
Figure 6: PNBs improve surgical outcome in both resectable and unresectable MRDs.


  1. 1

    Meier, J. D., Oliver, D. A. & Varvares, M. A. Surgical margin determination in head and neck oncology: current clinical practice. The results of an International American Head and Neck Society Member Survey. Head Neck 27, 952–958 (2005).

    Article  Google Scholar 

  2. 2

    de Carvalho, A. C. et al. Clinical significance of molecular alterations in histologically negative surgical margins of head and neck cancer patients. Oral. Oncol. 48, 240–248 (2012).

    Article  Google Scholar 

  3. 3

    Loree, T. R. & Strong, E. W. Significance of positive margins in oral cavity squamous carcinoma. Am. J. Surg. 160, 410–414 (1990).

    CAS  Article  Google Scholar 

  4. 4

    Looser, K. G., Shah, J. P. & Strong, E. W. The significance of ‘positive’ margins in surgically resected epidermoid carcinomas. Head Neck Surg. 1, 107–111 (1978).

    CAS  Article  Google Scholar 

  5. 5

    Vikram, B., Strong, E. W., Shah, J. P. & Spiro, R. Failure at the primary site following multimodality treatment in advanced head and neck cancer. Head Neck Surg. 6, 720–723 (1984).

    CAS  Article  Google Scholar 

  6. 6

    Leemans, C. R., Braakhuis, B. J. & Brakenhoff, R. H. The molecular biology of head and neck cancer. Nature Rev. Cancer 11, 9–22 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Haddad, R. I. & Shin, D. M. Recent advances in head and neck cancer. N. Engl. J. Med. 359, 1143–1154 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Calabrese, L. et al. Future challenges in head and neck cancer: from the bench to the bedside? Crit. Rev. Oncol. Hematol. 84, e90–e96 (2012).

    Article  Google Scholar 

  9. 9

    Langendijk, J. A. et al. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J. Clin. Oncol. 26, 3770–3887 (2008).

    Article  Google Scholar 

  10. 10

    Radosevich, J. A. (Ed.) Head and Neck Cancer: Current Perspectives, Advances and Challenges (Springer, 2013).

    Google Scholar 

  11. 11

    Vermorken, J. B. et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N. Engl. J. Med. 357, 1695–1704 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Wang, L. V. Multiscale photoacoustic microscopy and computed tomography. Nature Photon. 3, 503–509 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Jathoul, A. P. et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nature Photon. 9, 239–246 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Kaiplavil, S. & Mandelis, A. Truncated-correlation photothermal coherence tomography for deep subsurface analysis. Nature Photon. 8, 635–642 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Lo Celso, C. et al. Live-animal tracking of individual haemotapoietic stem/progenitor cells in their niche. Nature 457, 92–96 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Upile, T. et al. Head and neck optical diagnostics: vision of the future of surgery. Head Neck Oncol. 1, 25 (2009).

    Article  Google Scholar 

  17. 17

    Thorek, D. L., Ogirala, A., Beattie, B. J. & Grimm, J. Quantitative imaging of disease signatures through radioactive decay signal conversion. Nature Med. 19, 1345–1350 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Nguyen, Q. T. & Tsien, R. Y. Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nature Rev. 13, 653–662 (2013).

    CAS  Google Scholar 

  19. 19

    van Dam, G. M. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate reseptor-α targeting: first in-human results. Nature Med. 17, 1315–1319 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Vahmeijer, A. L., Hutteman, M., van de Vorst, J. R., van de Velde, C. J. H. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nature Rev. Clin. Oncol. 10, 507–518 (2013).

    Article  Google Scholar 

  21. 21

    Holt, D. et al. Intraoperative near-infrared imaging can distinguish cancer from normal tissue but not inflammation. PLoS ONE 9, e103342 (2014).

    Article  Google Scholar 

  22. 22

    Troyan, S. L. et al. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol. 16, 2943–2952 (2009).

    Article  Google Scholar 

  23. 23

    Qiu, L. et al. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus. Nature Med. 16, 603–606 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Ntziachristos, V. Clinical translation of optical and optoacoustic images. Phil. Trans. R. Soc. A. 369, 4666–4678 (2011).

    Article  Google Scholar 

  25. 25

    De Boer, E. et al. Optical innovations in surgery. Br. J. Surg. 105, e56–e72 (2015).

    Article  Google Scholar 

  26. 26

    Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nature Photon. 9, 219–227 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Lukianova-Hleb, E. Y. et al. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nature Med. 20, 778–784 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Hleb, E. Y. et al. LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles. Nanomedicine 3, 647–667 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Lukianova-Hleb, E. et al. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 4, 2109–2123 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Lukianova-Hleb, E. Y., Volkov, A. N., Wu, X. & Lapotko, D. O. Transient enhancement and spectral narrowing of the photothermal effect of plasmonic nanoparticles under pulsed excitation. Adv. Mater. 25, 772–776 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Kitz, M. et al. Vapor bubble generation around gold nano-particles and its application to damaging of cells. Biomed. Opt. Express 2, 291–304 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R. & Lin, C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84, 4023–4032 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Lapotko, D. et al. Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles. Proc. SPIE 5697, 82–89 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Lukianova-Hleb, E. Y., Hanna, E. Y., Hafner, J. H. & Lapotko, D. O. Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology 21, 085102 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Lukianova-Hleb, E. Y. et al. Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems. PLoS ONE 7, e34537 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Lukianova-Hleb, E. Y. et al. Plasmonic nanobubbles rapidly detect and destroy drug-resistant tumors. Theranostics 2, 976–987 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Pilot Study of AuroLase(TM) Therapy in Refractory and/or Recurrent Tumors of the Head and Neck (Nanospectra Biosciences, 2015);

  38. 38

    Merchant, B. Gold, the noble metal and the paradoxes of its toxicology. Biologicals 26, 49–59 (1998).

    CAS  Article  Google Scholar 

  39. 39

    Kean, W. F. & Kean, I. R. L. Clinical pharmacology of gold. Inflammopharmacology 16, 112–125 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Goldstein, N. I., Prewett, M., Zuklys, K., Rockwell, P. & Mendelsohn, J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res. 1, 1311–1318 (1995).

    CAS  Google Scholar 

  41. 41

    Wagner, D. S. et al. The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials 31, 7567–7574 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Chen, H. & Diebold, G. Chemical generation of acoustic waves: a giant photoacoustic effect. Science 250, 963–966 (1995).

    Article  Google Scholar 

  43. 43

    Lin, C. P. & Kelly, M. W. Cavitation and acoustic emission around laser-heated microparticles. Appl. Phys. Lett. 72, 2800 (1998).

    CAS  Article  Google Scholar 

  44. 44

    Lukianova-Hleb, E. Y., Volkov, A. N. & Lapotko, D. O. Laser pulse duration is critical for the generation of plasmonic nanobubbles. Langmuir 30, 7425–7434 (2014).

    CAS  Article  Google Scholar 

  45. 45

    Reuveni, T., Motiei, M., Romman, Z. & Popovtzer, R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int. J. Nanomed. 6, 2859–2864 (2011).

    CAS  Google Scholar 

  46. 46

    Sano, D. et al. Disruptive TP53 mutation is associated with aggressive disease characteristics in an orthotopic murine model of oral tongue cancer. Clin. Cancer Res. 17, 6658–6670 (2011).

    CAS  Article  Google Scholar 

  47. 47

    Sharafinski, M. E., Ferris, R. L., Ferrone, S. & Grandis, J. R. Epidermal growth factor receptor targeted therapy of squamous cell carcinoma of the head and neck. Head Neck 32, 1412–1421 (2010).

    Article  Google Scholar 

  48. 48

    Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001).

    CAS  Article  Google Scholar 

  49. 49

    Weissleder, R. A clearer vision for in vivo imaging. Nature Biotechnol. 19, 316–317 (2001).

    CAS  Article  Google Scholar 

Download references


The authors thank E.Y. Hanna and R.J. Karni for the discussion of clinical applications of the technology, A. Hurrell, T. Kelley, E. Batres, D. Wagner, A. Aleknavicius and R. Sulcas for help with experimental equipment, and J. Markovits for assistance with veterinary pathology and surgical training and S. Parminter for copy-editing. E.Y.L.H., Y.S.K., B.E.O. and D.O.L. were supported by grants from the Gillson Longenbaugh Foundation, the National Science Foundation (CBET-1341212) and the National Institutes of Health (R01GM094816).

Author information




E.Y.L.H. conducted PNB experiments, prepared the figures and wrote the manuscript. Y.S.K. conducted the animal experiments and collected animal data. I.B., A.M.G., D.O.L., B.E.O. and E.Y.L.H. discussed the experimental design and results, and clinical applications of the technology. B.E.O. contributed to the conceptual experimental design and organized the animal handling and monitoring. D.O.L. developed the technology and research strategy, designed the experimental setup and wrote the manuscript.

Corresponding author

Correspondence to Dmitri O. Lapotko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 888 kb)

Supplementary information

Supplementary Movie 1 (WMV 98 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukianova-Hleb, E., Kim, YS., Belatsarkouski, I. et al. Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles. Nature Nanotech 11, 525–532 (2016).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research