Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coaxial lithography

Abstract

The optical and electrical properties of heterogeneous nanowires are profoundly related to their composition and nanoscale architecture1,2,3,4,5,6,7. However, the intrinsic constraints of conventional synthetic and lithographic techniques have limited the types of multi-compositional nanowire that can be created and studied in the laboratory. Here, we report a high-throughput technique that can be used to prepare coaxial nanowires with sub-10 nm control over the architectural parameters in both axial and radial dimensions. The method, termed coaxial lithography (COAL), relies on templated electrochemical synthesis and can create coaxial nanowires composed of combinations of metals, metal oxides, metal chalcogenides and conjugated polymers. To illustrate the possibilities of the technique, a core/shell semiconductor nanowire with an embedded plasmonic nanoring was synthesized—a structure that cannot be prepared by any previously known method—and its plasmon-excitation-dependent optoelectronic properties were characterized.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Coaxial lithography.
Figure 2: Generalization of COAL to inorganic cores.
Figure 3: Integration of a plasmonic Au ring within a hybrid junction composed of an organic p-type core (P3HT) and an inorganic n-type shell (CdSe).

References

  1. Garnett, C. E., Brongersma, M. L., Cui, Y. & McGehee, M. D. Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011).

    CAS  Article  Google Scholar 

  2. Jones, M. R., Osberg, K. D., MacFarlane, R. J., Langille, M. R. & Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111, 3736–3827 (2011).

    CAS  Article  Google Scholar 

  3. Stewart, M. E. et al. Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008).

    CAS  Article  Google Scholar 

  4. Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    CAS  Article  Google Scholar 

  5. Tang, J., Huo, Z., Brittman, S., Gao, H. & Yang, P. Solution processed core-shell nanowires for efficient photovoltaic cells. Nature Nanotech. 6, 568–572 (2011).

    CAS  Article  Google Scholar 

  6. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    CAS  Article  Google Scholar 

  7. Wallentin, J. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339, 1057–1060 (2013).

    CAS  Article  Google Scholar 

  8. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    CAS  Article  Google Scholar 

  9. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

    CAS  Article  Google Scholar 

  10. Bourret, G. R. et al. Long-range plasmophore rulers. Nano Lett. 13, 2270–2275 (2013).

    CAS  Article  Google Scholar 

  11. Brittman, S., Gao, H., Garnett, E. C. & Yang, P. Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal. Nano Lett. 11, 5189–5195 (2011).

    CAS  Article  Google Scholar 

  12. Mubeen, S., Hernadez-Sosa, G., Moses, D., Lee, J. & Moskovits, M. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett. 11, 5548–5552 (2011).

    CAS  Article  Google Scholar 

  13. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotech. 8, 247–251 (2013).

    CAS  Article  Google Scholar 

  14. Gao, H., Liu, C., Jeong, H. E. & Yang, P. Plasmon enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 6, 234–240 (2012).

    CAS  Article  Google Scholar 

  15. Thomann, I. et al. Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 11, 3440–3446 (2011).

    CAS  Article  Google Scholar 

  16. Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A. Dip-pen nanolithography. Science 283, 661–663 (1999).

    CAS  Article  Google Scholar 

  17. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996).

    CAS  Article  Google Scholar 

  18. Qin, L., Park, S., Huang, L. & Mirkin, C. A. On-wire lithography. Science 309, 113–115 (2005).

    CAS  Article  Google Scholar 

  19. Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

    CAS  Article  Google Scholar 

  20. Dillen, D. C., Kim, K., Liu, E. & Tutuc, E. Radial modulation doping in core–shell nanowires. Nature Nanotech. 9, 116–120 (2014).

    CAS  Article  Google Scholar 

  21. Zhu, F. Q. et al. Magnetic bistability and controllable reversal of asymmetric ferromagnetic nanorings. Phys. Rev. Lett. 96, 027205 (2006).

    CAS  Article  Google Scholar 

  22. Penner, R. M. & Martin, C. R. Preparation and electrochemical characterization of ultramicroelectrode ensembles. Anal. Chem. 59, 2625–2630 (1987).

    CAS  Article  Google Scholar 

  23. Martin, C. R. Nanomaterials: a membrane-based synthetic approach. Science 266, 1961–1966 (1994).

    CAS  Article  Google Scholar 

  24. Routkevitch, D., Bigioni, T., Moskovits, M. & Xu, J. M. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J. Phys. Chem. 100, 14037–14047 (1996).

    CAS  Article  Google Scholar 

  25. Martin, B. R. et al. Orthogonal self-assembly on colloidal gold–platinum nanorods. Adv. Mater. 11, 1021–1025 (1999).

    CAS  Article  Google Scholar 

  26. Nicewarner-Pena, S. R. et al. Submicrometer metallic barcodes. Science 294, 137–141 (2001).

    CAS  Article  Google Scholar 

  27. Mirkovic, T. et al. Hinged nanorods made using a chemical approach to flexible nanostructures. Nature Nanotech. 2, 565–569 (2007).

    CAS  Article  Google Scholar 

  28. Banholzer, M. J., Qin, L., Millstone, J. E., Osberg, K. D. & Mirkin, C. A. On-wire lithography: synthesis, encoding, and biological applications of metal nanodisks and nanorods. Nature Protoc. 4, 838–848 (2009).

    CAS  Article  Google Scholar 

  29. Osberg, K. D., Schmucker, A. L., Senesi, A. J. & Mirkin, C. A. One-dimensional nanorod arrays: independent control of composition, length, and interparticle spacing with nanometer precision. Nano Lett. 11, 820–824 (2011).

    CAS  Article  Google Scholar 

  30. Liu, S. H., Tok, J. B. H. & Bao, Z. N. Nanowire lithography: fabricating controllable electrode gaps using Au–Ag–Au nanowires. Nano Lett. 5, 1071–1076 (2005).

    CAS  Article  Google Scholar 

  31. Ozel, T., Bourret, G. R., Schmucker, A. L., Brown, K. A. & Mirkin, C. A. Hybrid semiconductor core–shell nanowires with tunable plasmonic nanoantennas. Adv. Mater. 25, 4515–4520 (2013).

    CAS  Article  Google Scholar 

  32. Chen, X. et al. Plasmonic focusing in rod–sheath heteronanostructures. ACS Nano 3, 87–92 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Jones, K. Brown, M. O'Brien and M. Ashley for helpful discussions and comments. This material is based upon work supported by the following: AFOSR FA9550-09-1-0294 and AOARD FA2386-13-1-4124; the Non-equilibrium Energy Research Center (NERC), an Energy Frontier Research Center funded by the US DoE, Office of Science, Office of Basic Energy Sciences DE-SC0000989; the Office of the Assistant Secretary of Defense for Research and Engineering, DoD/NSSEFF Program/NPS N00244-09-1-0012 and N00244-09-1-0071; and NSF MRSEC programme (DMR-1121262) at the Materials Research Center of NU. This work also made use of the EPIC facility (NUANCE Center-Northwestern University), which has received support from the MRSEC programme (NSF DMR-1121262) at the Materials Research Center and the Nanoscale Science and Engineering Center (EEC-0118025/003), both programmes of the National Science Foundation (NSF). The authors also acknowledge support from the State of Illinois and Northwestern University. T.O. acknowledges 3M for a science and technology fellowship, ECS for a summer fellowship and SPIE for an optics and photonics education scholarship.

Author information

Authors and Affiliations

Authors

Contributions

T.O. and G.R.B. contributed equally to this work. T.O. and G.R.B designed the experiments, prepared the materials and collected the data. T.O., G.R.B. and C.A.M. designed the experiments, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 976 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozel, T., Bourret, G. & Mirkin, C. Coaxial lithography. Nature Nanotech 10, 319–324 (2015). https://doi.org/10.1038/nnano.2015.33

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.33

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research