A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device

Abstract

Spin-wave-based devices promise to usher in an era of low-power computing where information is carried by the precession of the electrons' spin instead of dissipative translation of their charge. This potential is, however, undermined by the need for a bias magnetic field, which must remain powered on to maintain an anisotropic device characteristic. Here, we propose a reconfigurable waveguide design that can transmit and locally manipulate spin waves without the need for any external bias field once initialized. We experimentally demonstrate the transmission of spin waves in straight as well as curved waveguides without a bias field, which has been elusive so far. Furthermore, we experimentally show a binary gating of the spin-wave signal by controlled switching of the magnetization, locally, in the waveguide. The results have potential implications in high-density integration and energy-efficient operation of nanomagnetic devices at room temperature.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of the experiment and operation principle.
Figure 2: SW transport in a straight waveguide.
Figure 3: Channelling SWs at an angle.
Figure 4: Gating of SW propagation.

References

  1. 1

    Grundler, D. Reconfigurable magnonics heats up. Nature Phys. 11, 438–441 (2015).

  2. 2

    Stamps, R. L. et al. The 2014 magnetism roadmap. J. Phys. D 47, 333001 (2014).

  3. 3

    Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

  4. 4

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nature Phys. 11, 453–461 (2015).

  5. 5

    Krawczyk, M. & Grundler, D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter 26, 123202 (2014).

  6. 6

    Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

  7. 7

    Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Direct observation and mapping of spin waves emitted by spin–torque nano-oscillators. Nature Mater. 9, 984–988 (2010).

  8. 8

    Madami, M. et al. Direct observation of a propagating spin wave induced by spin-transfer torque. Nature Nanotech. 6, 635–638 (2011).

  9. 9

    Urazhdin, S. et al. Nanomagnonic devices based on the spin-transfer torque. Nature Nanotech. 9, 509–513 (2014).

  10. 10

    Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

  11. 11

    Vogel, M. et al. Optically reconfigurable magnetic materials. Nature Phys. 11, 487–491 (2015).

  12. 12

    Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nature Commun. 5, 4700 (2014).

  13. 13

    Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).

  14. 14

    Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nature Phys. 11, 1022–1026 (2015).

  15. 15

    Demidov, V. E., Demokritov, S. O., Rott, K., Krzysteczko, P. & Reiss, G. Mode interference and periodic self-focusing of spin waves in permalloy microstripes. Phys. Rev. B 77, 064406 (2008).

  16. 16

    Sebastian, T. et al. Low-damping spin-wave propagation in a micro-structured Co2Mn0.6Fe0.4Si Heusler waveguide. Appl. Phys. Lett. 100, 112402 (2012).

  17. 17

    Yu, H. et al. High propagating velocity of spin waves and temperature dependent damping in a CoFeB thin film. Appl. Phys. Lett. 100, 262412 (2012).

  18. 18

    Pirro, P. et al. Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers. Appl. Phys. Lett. 104, 012402 (2014).

  19. 19

    Damon, R. W. & Eshbach, J. R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids 19, 308–320 (1961).

  20. 20

    Vogt, K. et al. Spin waves turning a corner. Appl. Phys. Lett. 101, 042410 (2012).

  21. 21

    Vogt, K. et al. Realization of a spin-wave multiplexer. Nature Commun. 5, 3727 (2014).

  22. 22

    Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Control of spin-wave phase and wavelength by electric current on the microscopic scale. Appl. Phys. Lett. 95, 262509 (2009).

  23. 23

    Garcia-Sanchez, F. et al. Narrow magnonic waveguides based on domain walls. Phys. Rev. Lett. 114, 247206 (2015).

  24. 24

    Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

  25. 25

    Kim, S.-K. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements. J. Phys. D 43, 264004 (2010).

  26. 26

    Demokritov, S. O. et al. Tunneling of dipolar spin waves through a region of inhomogeneous magnetic field. Phys. Rev. Lett. 93, 047201 (2004).

  27. 27

    Chumak, A. V., Neumann, T., Serga, A. A., Hillebrands, B. & Kostylev, M. P. A current-controlled, dynamic magnonic crystal. J. Phys. D 42, 205005 (2009).

  28. 28

    Barman, S., Barman, A. & Otani, Y. Controlled propagation of locally excited vortex dynamics in linear nanomagnet arrays. J. Phys. D 43, 335001 (2010).

  29. 29

    Huber, R., Schwarze, T. & Grundler, D. Nanostripe of subwavelength width as a switchable semitransparent mirror for spin waves in a magnonic crystal. Phys. Rev. B 88, 100405 (2013).

  30. 30

    Haldar, A. & Adeyeye, A. O. Vortex chirality control in circular disks using dipole-coupled nanomagnets. Appl. Phys. Lett. 106, 032404 (2015).

  31. 31

    Demidov, V. E. et al. Excitation of microwaveguide modes by a stripe antenna. Appl. Phys. Lett. 95, 112509 (2009).

  32. 32

    Demokritov, S. O. & Demidov, V. E. Micro-Brillouin light scattering spectroscopy of magnetic nanostructures. IEEE Trans. Magn. 44, 6–12 (2008).

  33. 33

    Schneider, T. et al. Spin-wave tunnelling through a mechanical gap. Europhys. Lett. 90, 27003 (2010).

  34. 34

    Kozhanov, A. et al. Dispersion and spin wave ‘tunneling’ in nanostructured magnetostatic spin waveguides. J. Appl. Phys. 105, 07D311 (2009).

  35. 35

    Hansen, U.-H., Gatzen, M., Demidov, V. E. & Demokritov, S. O. Resonant tunneling of spin-wave packets via quantized states in potential wells. Phys. Rev. Lett. 99, 127204 (2007).

  36. 36

    Jung, H. et al. Logic operations based on magnetic-vortex-state networks. ACS Nano. 6, 3712–3717 (2012).

  37. 37

    Kumar, D., Barman, S. & Barman, A. Magnetic vortex based transistor operations. Sci. Rep. 4, 4108 (2014).

  38. 38

    Han, D.-S. et al. Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals. Sci. Rep. 3, 2262 (2013).

  39. 39

    Topp, J., Heitmann, D. & Grundler, D. Interaction effects on microwave-assisted switching of Ni80Fe20 nanowires in densely packed arrays. Phys. Rev. B 80, 174421 (2009).

  40. 40

    Ando, K. et al. Electric detection of spin wave resonance using inverse spin-Hall effect. Appl. Phys. Lett. 94, 262505 (2009).

  41. 41

    Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature Nanotech. 9, 548–554 (2014).

  42. 42

    Bhowmik, D., You, L. & Salahuddin, S. Spin Hall effect clocking of nanomagnetic logic without a magnetic field. Nature Nanotech. 9, 59–63 (2014).

  43. 43

    Yu, H. et al. Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics. Sci. Rep. 4, 6848 (2014).

  44. 44

    Hahn, C. et al. Measurement of the intrinsic damping constant in individual nanodisks of Y3Fe5O12 and Y3Fe5O12|Pt. Appl. Phys. Lett. 104, 152410 (2014).

  45. 45

    Seo, S.-M., Lee, K.-J., Yang, H. & Ono, T. Current-induced control of spin-wave attenuation. Phys. Rev. Lett. 102, 147202 (2009).

  46. 46

    Wang, Z., Sun, Y., Wu, M., Tiberkevich, V. & Slavin, A. Control of spin waves in a thin film ferromagnetic insulator through interfacial spin scattering. Phys. Rev. Lett. 107, 146602 (2011).

  47. 47

    Donahue, M. J. & Porter, D. G. Interagency Report NISTIR 6376 (National Institute of Standards and Technology, September 1999).

  48. 48

    Kumar, D., Dmytriiev, O., Ponraj, S. & Barman, A. Numerical calculation of spin wave dispersions in magnetic nanostructures. J. Phys. D 45, 015001 (2012).

Download references

Acknowledgements

This work was supported by the National Research Foundation, the Prime Minister's Office, Singapore, under its Competitive Research Programme (CRP award no. NRF-CRP 10-2012-03), SMF-NUS New Horizon Awards and Ministry of Education, Singapore AcRF Tier 2 grant (no. R-263-000-A19-112). A.O.A. is a member of the Singapore Spintronics Consortium (SG-SPIN).

Author information

A.H. and A.O.A. conceived the project. A.H. fabricated the samples and carried out the experiments. D.K. performed the micromagnetic simulations. A.O.A. supervised the overall project. All authors discussed the results and co-wrote the manuscript.

Correspondence to Adekunle Olusola Adeyeye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 784 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haldar, A., Kumar, D. & Adeyeye, A. A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device. Nature Nanotech 11, 437–443 (2016). https://doi.org/10.1038/nnano.2015.332

Download citation

Further reading