Article | Published:

Femtosecond control of electric currents in metallic ferromagnetic heterostructures

Nature Nanotechnology volume 11, pages 455458 (2016) | Download Citation

Abstract

The idea to use not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (1012 Hz) emission spectroscopy and exploiting the spin–orbit interaction, we demonstrate the optical generation of electric photocurrents in metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

  2. 2.

    & Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

  3. 3.

    et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

  4. 4.

    et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

  5. 5.

    , & Spin-orbit torques in Co/Pt(111) and Mn/W(001) magnetic bilayers from first principles. Phys. Rev. B 90, 174423 (2014).

  6. 6.

    et al. An antidamping spin–orbit torque originating from the Berry curvature. Nature Nanotech. 9, 211–217 (2014).

  7. 7.

    et al. Magnonic charge pumping via spin–orbit coupling. Nature Nanotech. 10, 50–54 (2015).

  8. 8.

    & Piezo-magnetoelectric effects in p-doped semiconductors. Phys. Rev. B 72, 033203 (2005).

  9. 9.

    & Theory of spin torque due to spin–orbit coupling. Phys. Rev. B 79, 094422 (2009).

  10. 10.

    , & Current-induced torques in magnetic materials. Nature Mater. 11, 372–381 (2012).

  11. 11.

    et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013).

  12. 12.

    , & Theoretical discussion of the inverse Faraday effect, Raman scattering, and related phenomena. Phys. Rev. 143, 574–583 (1966).

  13. 13.

    et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

  14. 14.

    et al. Experimental observation of the optical spin transfer torque. Nature Phys. 8, 411–415 (2012).

  15. 15.

    et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

  16. 16.

    et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

  17. 17.

    et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nature Mater. 13, 286–292 (2014).

  18. 18.

    , , & Observation of large Kerr angles in the nonlinear optical response from magnetic multilayers. Phys. Rev. Lett. 74, 3692–3695 (1995).

  19. 19.

    et al. Interface magnetism and possible quantum well oscillations in ultrathin Co/Cu films observed by magnetization induced second harmonic generation. Phys. Rev. Lett. 74, 1462–1465 (1995).

  20. 20.

    et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

  21. 21.

    , , & Tailoring magnetic skyrmions in ultra-thin transition metal films. Nature Commun. 5, 4030 (2014).

  22. 22.

    & Dzyaloshinskii–Moriya-type interaction and Lifshitz invariant in Rashba 2D electron gas systems. EPL 107, 67002 (2014).

  23. 23.

    et al. Magneto-gyrotropic photogalvanic effects in GaN/AlGaN two-dimensional systems. Solid State Commun. 145, 56–60 (2008).

  24. 24.

    et al. Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum. Nature Phys. 4, 855–858 (2008).

  25. 25.

    et al. Ultrafast transport of laser-excited spin-polarized carriers in Au/Fe/MgO(001). Phys. Rev. Lett. 107, 076601 (2011).

  26. 26.

    et al. Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current. Nature Commun. 3, 1037 (2012).

  27. 27.

    et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nature Nanotech. 8, 256–260 (2013).

  28. 28.

    , , & Spin current generated by thermally driven ultrafast demagnetization. Nature Commun. 5, 4334 (2014).

  29. 29.

    et al. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

  30. 30.

    et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

  31. 31.

    et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nature Mater. 12, 240–245 (2013).

  32. 32.

    et al. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces. Phys. Rev. Lett. 112, 106602 (2014).

  33. 33.

    , & Effect of spin-polarized electrons on terahertz emission from photoexcited GaAs. J. Appl. Phys. 105, 113116 (2009).

  34. 34.

    Ultrafast Laser Driven Spin Generation in Metallic Ferromagnets PhD thesis, Univ. Illinois (2015).

  35. 35.

    , & Miniature plasmonic wave plates. Phys. Rev. Lett. 101, 043902 (2008).

  36. 36.

    et al. Near-field polarization shaping by a near-resonant plasmonic cross antenna. Phys. Rev. B 80, 153409 (2009).

  37. 37.

    et al. Ultrafast modification of exchange interactions in iron oxides. Nature Commun. 6, 8190 (2015).

  38. 38.

    , , , & Simultaneous measurements of terahertz emission and magneto-optical Kerr effect for resolving ultrafast laser-induced demagnetization dynamics. Phys. Rev. B 92, 104419 (2015).

Download references

Acknowledgements

The authors thank T. Toonen, A. van Etteger and S. Semin for technical support and A. Brataas, A. Kirilyuk, A.K. Zvezdin and V.V. Bel'kov for discussions. This work was supported by the Foundation for Fundamental Research on Matter (FOM), the European Union's Seventh Framework Programme (FP7/2007-2013) grants no. 280555 (Go-Fast) and no. 281043 (FemtoSpin), projects no. Norte-070124-FEDER-000070 and no. FEDER-POCTI/0155, European Research Council grants no. 257280 (Femtomagnetism) and no. 339813 (Exchange), and the ‘Leading Scientist’ programme of the Russian Ministry of Education and Science (14.Z50.31.0034). J.D.C. acknowledges FCT grant no. SFRH/BD/7939/2011.

Author information

Affiliations

  1. Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen, The Netherlands

    • T. J. Huisman
    • , R. V. Mikhaylovskiy
    • , Th. Rasing
    •  & A. V. Kimel
  2. INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal

    • J. D. Costa
    • , E. Paz
    •  & P. P. Freitas
  3. IN-IFIMUP, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

    • J. D. Costa
    •  & J. Ventura
  4. Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany

    • F. Freimuth
    • , S. Blügel
    •  & Y. Mokrousov

Authors

  1. Search for T. J. Huisman in:

  2. Search for R. V. Mikhaylovskiy in:

  3. Search for J. D. Costa in:

  4. Search for F. Freimuth in:

  5. Search for E. Paz in:

  6. Search for J. Ventura in:

  7. Search for P. P. Freitas in:

  8. Search for S. Blügel in:

  9. Search for Y. Mokrousov in:

  10. Search for Th. Rasing in:

  11. Search for A. V. Kimel in:

Contributions

T.J.H., R.V.M., J.D.C. and A.V.K. conceived the experiments. T.J.H. and R.V.M. designed and built the experimental set-up. T.J.H. performed the measurements and analysed the data with help from R.V.M. and A.V.K. J.D.C. fabricated and characterized the samples with help from E.P., J.V. and P.P.F. The theoretical formalisms were derived by T.J.H., R.V.M. and F.F., with contributions from Y.M., S.B. and A.V.K. T.J.H., R.V.M., F.F. and A.V.K. co-wrote the paper. All authors discussed the results and commented on the manuscript. The project was coordinated by A.V.K.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to T. J. Huisman.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2015.331

Further reading