Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers

Subjects

Abstract

The current gold standard to reduce non-specific cellular uptake of drug delivery vehicles is by covalent attachment of poly(ethylene glycol) (PEG). It is thought that PEG can reduce protein adsorption and thereby confer a stealth effect. Here, we show that polystyrene nanocarriers that have been modified with PEG or poly(ethyl ethylene phosphate) (PEEP) and exposed to plasma proteins exhibit a low cellular uptake, whereas those not exposed to plasma proteins show high non-specific uptake. Mass spectrometric analysis revealed that exposed nanocarriers formed a protein corona that contains an abundance of clusterin proteins (also known as apolipoprotein J). When the polymer-modified nanocarriers were incubated with clusterin, non-specific cellular uptake could be reduced. Our results show that in addition to reducing protein adsorption, PEG, and now PEEPs, can affect the composition of the protein corona that forms around nanocarriers, and the presence of distinct proteins is necessary to prevent non-specific cellular uptake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of nanocarriers.
Figure 2: Cellular uptake of PEEP and PEG nanocarriers.
Figure 3: Proteomic analysis of protein corona on the surface of nanocarriers.
Figure 4: Clusterin reduces non-specific cellular uptake.

Similar content being viewed by others

References

  1. Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotech. 8, 772–781 (2013).

    Article  CAS  Google Scholar 

  2. Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  Google Scholar 

  3. Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotech. 7, 779–786 (2012).

    Article  CAS  Google Scholar 

  4. Aggarwal, P. et al. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61, 428–437 (2009).

    CAS  Google Scholar 

  5. Sacchetti, C. et al. Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano 7, 1974–1989 (2013).

    Article  CAS  Google Scholar 

  6. Veronese, F. M. & Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today 10, 1451–1458 (2005).

    Article  CAS  Google Scholar 

  7. Alconcel, S. N. S., Baas, A. S. & Maynard, H. D. FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym. Chem. 2, 1442–1448 (2011).

    Article  CAS  Google Scholar 

  8. Baier, G. et al. Suppressing unspecific cell uptake for targeted delivery using hydroxyethyl starch nanocapsules. Biomacromolecules 13, 2704–2715 (2012).

    Article  CAS  Google Scholar 

  9. Landfester, K. & Mailander, V. Nanocapsules with specific targeting and release properties using miniemulsion polymerization. Expert Opin. Drug Deliv. 10, 593–609 (2013).

    Article  CAS  Google Scholar 

  10. Worz, A. et al. Protein-resistant polymer surfaces. J. Mater. Chem. 22, 19547–19561 (2012).

    Article  Google Scholar 

  11. Otsuka, H., Nagasaki, Y. & Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 64, 246–255 (2012).

    Article  Google Scholar 

  12. Pino, P. d. et al. Protein corona formation around nanoparticles—from the past to the future. Mater. Horiz. 1, 301–313 (2014).

    Article  Google Scholar 

  13. Pelegri-O'Day, E. M., Lin, E. W. & Maynard, H. D. Therapeutic protein–polymer conjugates: advancing beyond PEGylation. J. Am. Chem. Soc. 136, 14323–14332 (2014).

    Article  CAS  Google Scholar 

  14. Gref, R. et al. ‘Stealth’ corona–core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B 18, 301–313 (2000).

    Article  CAS  Google Scholar 

  15. Kim, H. R. et al. Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and protein lab-on-chip system. Electrophoresis 28, 2252–2261 (2007).

    Article  CAS  Google Scholar 

  16. Ishida, T. et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J. Control Rel. 112, 15–25 (2006).

    Article  CAS  Google Scholar 

  17. Ishida, T. & Kiwada, H. Anti-polyethyleneglycol antibody response to PEGylated substances. Biol. Pharm. Bull. 36, 889–891 (2013).

    Article  CAS  Google Scholar 

  18. Shah, S., Prematta, T., Adkinson, N. F. & Ishmael, F. T. Hypersensitivity to polyethylene glycols. J. Clin. Pharmacol. 53, 352–355 (2013).

    Article  CAS  Google Scholar 

  19. Bertrand, N. & Leroux, J. C. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J. Control. Rel. 161, 152–163 (2012).

    Article  CAS  Google Scholar 

  20. Hamad, I., Hunter, A. C., Szebeni, J. & Moghimi, S. M. Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol. Immunol. 46, 225–232 (2008).

    Article  CAS  Google Scholar 

  21. Amoozgar, Z. & Yeo, Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4, 219–233 (2012).

    Article  CAS  Google Scholar 

  22. Steinbach, T., Ritz, S. & Wurm, F. R. Water-soluble poly(phosphonate)s via living ring-opening polymerization. ACS Macro Lett. 3, 244–248 (2014).

    Article  CAS  Google Scholar 

  23. Marsico, F. et al. Hyperbranched unsaturated polyphosphates as a protective matrix for long-term photon upconversion in air. J. Am. Chem. Soc. 136, 11057–11064 (2014).

    Article  CAS  Google Scholar 

  24. Troev, K. D. Polyphosphoesters: Chemistry and Application (Elsevier, 2012).

    Google Scholar 

  25. Steinbach, T. & Wurm, F. R. Poly(phosphoester)s: a new platform for degradable polymers. Angew. Chem. Int. Ed. 54, 6098–6108 (2015).

    Article  CAS  Google Scholar 

  26. Zhang, S. Y. et al. Poly(ethylene oxide)-block-polyphosphester-based paclitaxel conjugates as a platform for ultra-high paclitaxel-loaded multifunctional nanoparticles. Chem. Sci. 4, 2122–2126 (2013).

    Article  CAS  Google Scholar 

  27. Wang, Y. C. et al. Recent progress in polyphosphoesters: from controlled synthesis to biomedical applications. Macromol. Biosci. 9, 1154–1164 (2009).

    Article  CAS  Google Scholar 

  28. Holzapfel, V. et al. Preparation of fluorescent carboxyl and amino functionalized polystyrene particles by miniemulsion polymerization as markers for cells. Macromol. Chem. Phys. 206, 2440–2449 (2005).

    Article  CAS  Google Scholar 

  29. Kuga, S. Pore-size distribution analysis of gel substances by size exclusion chromatography. J. Chromatogr. A 206, 449–461 (1981).

    Article  CAS  Google Scholar 

  30. Kang, B. et al. Tailoring the stealth properties of biocompatible polysaccharide nanocontainers. Biomaterials 49, 125–134 (2015).

    Article  CAS  Google Scholar 

  31. Tenzer, S. et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5, 7155–7167 (2011).

    Article  CAS  Google Scholar 

  32. Ritz, S. et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16, 1311–1321 (2015).

    Article  CAS  Google Scholar 

  33. Walkey, C. D. & Chan, W. C. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41, 2780–2799 (2012).

    Article  CAS  Google Scholar 

  34. Goppert, T. M. & Muller, R. H. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm. 302, 172–186 (2005).

    Article  CAS  Google Scholar 

  35. Blunk, T. et al. Colloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 14, 1382–1387 (1993).

    Article  CAS  Google Scholar 

  36. Gessner, A. et al. Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int. J. Pharm. 196, 245–249 (2000).

    Article  CAS  Google Scholar 

  37. Vanhooren, V. et al. Protein modification and maintenance systems as biomarkers of ageing. Mech. Ageing Dev. 151, 71–84 (2015).

    Article  CAS  Google Scholar 

  38. Koltai, T. Clusterin: a key player in cancer chemoresistance and its inhibition. Oncol. Targets Ther. 7, 447–456 (2014).

    Article  Google Scholar 

  39. Blaschuk, O., Burdzy, K. & Fritz, I. B. Purification and characterization of a cell-aggregating factor (clusterin), the major glycoprotein in ram rete testis fluid. J. Biol. Chem. 258, 7714–7720 (1983).

    CAS  Google Scholar 

  40. Nilselid, A. M. et al. Clusterin in cerebrospinal fluid: analysis of carbohydrates and quantification of native and glycosylated forms. Neurochem. Int. 48, 718–728 (2006).

    Article  CAS  Google Scholar 

  41. Silajdzic, E., Minthon, L., Bjorkqvist, M. & Hansson, O. No diagnostic value of plasma clusterin in Alzheimer's disease. PLoS ONE 7, e50237 (2012).

    Article  CAS  Google Scholar 

  42. Poon, S. et al. Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 39, 15953–15960 (2000).

    Article  CAS  Google Scholar 

  43. Jenne, D. E. & Tschopp, J. Clusterin: the intriguing guises of a widely expressed glycoprotein. Trends Biochem. Sci. 17, 154–159 (1992).

    Article  CAS  Google Scholar 

  44. Thiele, L. et al. Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells. Biomaterials 24, 1409–1418 (2003).

    Article  CAS  Google Scholar 

  45. Winzen, S. et al. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale 7, 2992–3001 (2015).

    Article  CAS  Google Scholar 

  46. Rodriguez, P. L. et al. Minimal ‘self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    Article  CAS  Google Scholar 

  47. Walkey, C. D. et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  CAS  Google Scholar 

  48. Barran-Berdon, A. L. et al. Time evolution of nanoparticle–protein corona in human plasma: relevance for targeted drug delivery. Langmuir 29, 6485–6494 (2013).

    Article  CAS  Google Scholar 

  49. Zensi, A. et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control. Rel. 137, 78–86 (2009).

    Article  CAS  Google Scholar 

  50. Kreuter, J. et al. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J. Control. Rel. 118, 54–58 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.S. and F.R.W. acknowledge support from the Max Planck Graduate Center (MPGC). G.B. and T.S. acknowledge support from the Graduate School of Excellence ‘MAINZ’ (Materials Science in Mainz). This work was supported by the DFG/SFB1066 (‘Nanodimensionale polymere Therapeutika für die Tumortherapie’, Q1 and Q2). F.R.W. thanks the DFG WU 750/6-1 for funding.

Author information

Authors and Affiliations

Authors

Contributions

F.R.W., V.M. and K.L. supervised the project. F.R.W., V.M., S.S. and G.B. conceived and designed the experiments. G.B. and T.S. synthesized the polymers and nanoparticles. S.S. performed the cell experiments and proteomic analysis. S.W. and K.M. performed the isothermal titration calorimetry measurements. F.R.W. and S.S. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Volker Mailänder or Frederik R. Wurm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schöttler, S., Becker, G., Winzen, S. et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nature Nanotech 11, 372–377 (2016). https://doi.org/10.1038/nnano.2015.330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing