Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface functionalization of two-dimensional metal chalcogenides by Lewis acid–base chemistry

Abstract

Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid–base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+n(InSe)] coordination complexes. Using this strategy, we fabricate planar p–n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid–base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mechanism of InSe-based 2D coordination complex formation and InSe–Ti complex lattice structure.
Figure 2: Characterization and theoretical simulation of the InSe–Ti coordinate band and EDS mapping.
Figure 3: Fermi level control via Lewis acid–base surface functionalization.
Figure 4: Optoelectronic characterization on functionalized and sensitized InSe.

Similar content being viewed by others

References

  1. Baugher, B. W., Churchill, H. O., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nature Nanotech. 9, 262–267 (2014).

    Article  CAS  Google Scholar 

  2. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nature Nanotech. 9, 257–261 (2014).

    Article  CAS  Google Scholar 

  3. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nature Nanotech. 9, 268–272 (2014).

    Article  CAS  Google Scholar 

  4. Lee, C. H. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014).

    Article  CAS  Google Scholar 

  5. Shi, S. F. & Wang, F. Two-dimensional materials: atomically thin p-n junctions. Nature Nanotech. 9, 664–665 (2014).

    Article  CAS  Google Scholar 

  6. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Mater. 13, 1135–1142 (2014).

    Article  CAS  Google Scholar 

  7. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  8. Zhu, W. et al. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15, 1883–1890 (2015).

    Article  CAS  Google Scholar 

  9. Kang, D. H. et al. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 9, 1099–1107 (2015).

    Article  CAS  Google Scholar 

  10. Yu, S. H. et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano 8, 8285–8291 (2014).

    Article  CAS  Google Scholar 

  11. Yu, Z. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nature Commun. 5, 5290 (2014).

    Article  CAS  Google Scholar 

  12. Voiry, D. et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chem. 7, 45–49 (2015).

    Article  CAS  Google Scholar 

  13. Chou, S. S. et al. Ligand conjugation of chemically exfoliated MoS2 . J. Am. Chem. Soc. 135, 4584–4587 (2013).

    Article  CAS  Google Scholar 

  14. Karunadasa, H. I. et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012).

    Article  CAS  Google Scholar 

  15. Sarkar, D. et al. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. Nano Lett. 15, 2852–2862 (2015).

    Article  CAS  Google Scholar 

  16. De Blasi, C., Micocci, G., Mongelli, S. & Tepore, A. Large InSe single crystals grown from stoichiometric and non-stoichiometric melts. J. Cryst. Growth 57, 482–486 (1982).

    Article  CAS  Google Scholar 

  17. Lei, S. et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano 8, 1263–1272 (2014).

    Article  CAS  Google Scholar 

  18. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    Article  CAS  Google Scholar 

  19. Sánchez-Royo, J. F. et al. Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 7, 1556–1568 (2014).

    Article  Google Scholar 

  20. Mulliken, R. S. Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys. 23, 1833 (1955).

    Article  CAS  Google Scholar 

  21. Kuroda, N. & Nishina, Y. Resonant Raman scattering at higher M0 exciton edge in layer compound InSe. Solid State Commun. 28, 439–443 (1978).

    Article  CAS  Google Scholar 

  22. Late, D. J. et al. GaS and GaSe ultrathin layer transistors. Adv Mater. 24, 3549–3554 (2012).

    Article  CAS  Google Scholar 

  23. Deng, Y. et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 8, 8292–8299 (2014).

    Article  CAS  Google Scholar 

  24. Lenigk, R., Carles, M., Ip, N. Y. & Sucher, N. J. Surface characterization of a silicon-chip-based DNA microarray. Langmuir 17, 2497–2501 (2001).

    Article  CAS  Google Scholar 

  25. Vericat, C. et al. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 39, 1805–1834 (2010).

    Article  CAS  Google Scholar 

  26. Koops, S. E., O'Regan, B. C., Barnes, P. R. & Durrant, J. R. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 4808–4818 (2009).

    Article  CAS  Google Scholar 

  27. Wang, Z.-S., Kawauchi, H., Kashima, T. & Arakawa, H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev. 248, 1381–1389 (2004).

    Article  CAS  Google Scholar 

  28. Lee, K. E., Gomez, M. A., Elouatik, S. & Demopoulos, G. P. Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir 26, 9575–9583 (2010).

    Article  CAS  Google Scholar 

  29. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nature Mater. 14, 1195–1205 (2015).

    Article  CAS  Google Scholar 

  30. Atomistix ToolKit version 2014.2 (QuantumWise A/S, 2014); http://www.w.quantumwise.com.

  31. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  32. Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by FAME, one of six centres of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA, and also supported by the MURI ARO program, grant number W911NF-11-1-0362. This work was also sponsored (at Rice and UCSB) by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0268. G.B. and D.G. thank the Center for Computational Engineering and Sciences at Unicamp for financial support through the FAPESP/CEPID grant number 2013/08293-7.

Author information

Authors and Affiliations

Authors

Contributions

S.L., A.G., R.V., and P.A. conceived and supervised the experiments. S.L., A.G. and X.W. designed the experiments and analysed the data. S.L., Y.H. Z.J. and A.G. fabricated the devices and performed electronic and optoelectronic measurement and analysis. X.F and E.B. performed the chemical reaction. X.W., B.L., L.G., P.D., L.J. and E.B. performed STEM, XPS and EDS studies. J. K. and K. B. performed the DFT calculations with Atomistix ToolKit. G.B. and D.S.G. performed the DFT calculations with Quantum Espresso. W.C. and analysed the simulation data. S.L. synthesized few-layered InSe and performed Raman study. Y.G. synthesized single-layered MoS2, and MoSe2 samples. S.L., X.W., A.G., B.L., J.K. E.B., K.B., R.V. and P.A. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Kaustav Banerjee, Robert Vajtai or Pulickel Ajayan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1985 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, S., Wang, X., Li, B. et al. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid–base chemistry. Nature Nanotech 11, 465–471 (2016). https://doi.org/10.1038/nnano.2015.323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing