Decoding DNA, RNA and peptides with quantum tunnelling

Subjects

Abstract

Drugs and treatments could be precisely tailored to an individual patient by extracting their cellular- and molecular-level information. For this approach to be feasible on a global scale, however, information on complete genomes (DNA), transcriptomes (RNA) and proteomes (all proteins) needs to be obtained quickly and at low cost. Quantum mechanical phenomena could potentially be of value here, because the biological information needs to be decoded at an atomic level and quantum tunnelling has recently been shown to be able to differentiate single nucleobases and amino acids in short sequences. Here, we review the different approaches to using quantum tunnelling for sequencing, highlighting the theoretical background to the method and the experimental capabilities demonstrated to date. We also explore the potential advantages of the approach and the technical challenges that must be addressed to deliver practical quantum sequencing devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Genomic cost and throughput over the past decade.
Figure 2: Schematic of quantum sequencing.
Figure 3: Different approaches to quantum sequencing.
Figure 4: Single-molecule identification of base molecules via tunnelling currents.
Figure 5: Sequencing single DNA oligomers using tunnelling currents.
Figure 6: Identifying single amino acid molecules using tunnelling currents.
Figure 7: Sequencing data of a peptide obtained using a mechanically controllable break junction.

References

  1. 1

    Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, 2113–2144 (2007).

    CAS  Google Scholar 

  2. 2

    Wheeler, D. A. et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–875 (2008).

    CAS  Google Scholar 

  3. 3

    Manolio, T. A., Brooks, L. D. & Collins, F. S. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118, 1590–1605 (2008).

    CAS  Google Scholar 

  4. 4

    Feng, S. H., Jacobsen, S. E. & Reik, W. Epigenetic reprogramming in plant and animal development. Science 330, 622–627 (2010).

    CAS  Google Scholar 

  5. 5

    Xu, X. et al. Genome sequence and analysis of the tuber crop potato. Nature 475, 189–194 (2011).

    CAS  Google Scholar 

  6. 6

    Chen, J. F. et al. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nature Commun. 4, 1595 (2013).

    Google Scholar 

  7. 7

    Sanger, F. & Coulson, A. R. Rapid method for determining sequences in DNA by primed synthesis with DNA-polymerase. J. Mol. Biol. 94, 441–446 (1975).

    CAS  Google Scholar 

  8. 8

    Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  Google Scholar 

  9. 9

    Schloss, J. A. How to get genomes at one ten-thousandth the cost. Nature Biotechnol. 26, 1113–1115 (2008).

    CAS  Google Scholar 

  10. 10

    Mardis, E. R. A decade's perspective on DNA sequencing technology. Nature 470, 198–203 (2011).

    CAS  Google Scholar 

  11. 11

    Kircher, M. & Kelso, J. High-throughput DNA sequencing — concepts and limitations. Bioessays 32, 524–536 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Loman, N. J. et al. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nature Rev. Microbiol. 10, 599–606 (2012).

    CAS  Google Scholar 

  13. 13

    Metzker, M. L. Applications of next-generation sequencing technologies — the next generation. Nature Rev. Genet. 11, 31–46 (2010).

    CAS  Google Scholar 

  14. 14

    Holt, R. A. & Jones, S. J. M. The new paradigm of flow cell sequencing. Genome Res. 18, 839–846 (2008).

    CAS  Google Scholar 

  15. 15

    Rothberg, J. M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011).

    CAS  Google Scholar 

  16. 16

    Loman, N. J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnol. 30, 434–439 (2012).

    CAS  Google Scholar 

  17. 17

    Zwolak, M. & Di Ventra, M. Colloquium: physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80, 141–165 (2008).

    Google Scholar 

  18. 18

    Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26, 1146–1153 (2008). A comprehensive review of nanopore-based methods for DNA sequencing.

    CAS  Google Scholar 

  19. 19

    Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nature Nanotech. 6, 615–624 (2011). A comprehensive review of recent advances and challenges in controlling the translocation speed of single DNA molecules through nanopores.

    CAS  Google Scholar 

  20. 20

    Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    CAS  Google Scholar 

  21. 21

    Kowalczyk, S. W., Grosberg, A. Y., Rabin, Y. & Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22, 315101–315105 (2011).

    Google Scholar 

  22. 22

    Ando, G., Hyun, C., Li, J. L. & Mitsui, T. Directly observing the motion of DNA molecules near solid-state nanopores. ACS Nano 6, 10090–10097 (2012).

    CAS  Google Scholar 

  23. 23

    Lu, B. et al. Pressure-controlled motion of single polymers through solid-state nanopores. Nano Lett. 13, 3048–3052 (2013).

    CAS  Google Scholar 

  24. 24

    Braha, O. et al. Designed protein pores as components for biosensors. Chem. Biol. 4, 497–505 (1997).

    CAS  Google Scholar 

  25. 25

    Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007). A comprehensive review of recent advances in solid-state nanopores.

    CAS  Google Scholar 

  26. 26

    Heng, J. B. et al. Beyond the gene chip. Bell Labs Tech. J. 10, 5–22 (2005).

    CAS  Google Scholar 

  27. 27

    Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nature Methods 9, 487–492 (2012).

    CAS  Google Scholar 

  28. 28

    Rosa, A., Di Ventra, M. & Micheletti, C. Topological jamming of spontaneously knotted polyelectrolyte chains driven through a nanopore. Phys. Rev. Lett. 109, 118301 (2012).

    CAS  Google Scholar 

  29. 29

    Eisenstein, M. Oxford Nanopore announcement sets sequencing sector abuzz. Nature Biotechnol. 30, 295–296 (2012).

    CAS  Google Scholar 

  30. 30

    Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nature Methods 12, 351–356 (2015). A demonstration of the feasibility of the MinION sequencer, which is based on biological nanopores.

    CAS  Google Scholar 

  31. 31

    Mikheyev, A. S. & Tin, M. M. Y. A first look at the Oxford Nanopore MinION sequencer. Mol. Ecol. Resour. 14, 1097–1102 (2014).

    CAS  Google Scholar 

  32. 32

    Tanaka, H. & Kawai, T. Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. Nature Nanotech. 4, 518–522 (2009).

    CAS  Google Scholar 

  33. 33

    Zwolak, M. & Di Ventra, M. Electronic signature of DNA nucleotides via transverse transport. Nano Lett. 5, 421–424 (2005). A paper that theoretically shows that quantum tunnelling can differentiate single nucleobases.

    CAS  Google Scholar 

  34. 34

    Krems, M., Zwolak, M., Pershin, Y. V. & Di Ventra, M. Effect of noise on DNA sequencing via transverse electronic transport. Biophys. J. 97, 1990–1996 (2009).

    CAS  Google Scholar 

  35. 35

    Lagerqvist, J., Zwolak, M. & Di Ventra, M. Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–782 (2006). A paper that proposes the quantum sequencing protocol.

    CAS  Google Scholar 

  36. 36

    Boynton, P., Balatsky, A. V., Schuller, I. K. & Di Ventra, M. Improving sequencing by tunneling with multiplexing and cross-correlations. J. Comput. Electron. 13, 794–800 (2014).

    CAS  Google Scholar 

  37. 37

    Lagerqvist, J., Zwolak, M. & Di Ventra, M. Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. Biophys. J. 93, 2384–2390 (2007).

    CAS  Google Scholar 

  38. 38

    He, Y. H., Tsutsui, M., Fan, C., Taniguchi, M. & Kawai, T. Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano 5, 5509–5518 (2011).

    CAS  Google Scholar 

  39. 39

    He, Y. H., Tsutsui, M., Taniguchi, M. & Kawai, T. DNA capture in nanopores for genome sequencing: challenges and opportunities. J. Mater. Chem. 22, 13423–13427 (2012).

    CAS  Google Scholar 

  40. 40

    Yokota, K., Tsutsui, M. & Taniguchi, M. Electrode-embedded nanopores for label-free single-molecule sequencing by electric currents. RSC Adv. 4, 15886–15899 (2014).

    CAS  Google Scholar 

  41. 41

    Huang, S. et al. Identifying single bases in a DNA oligomer with electron tunnelling. Nature Nanotech. 5, 868–873 (2010). Proof-of-principle experiments demonstrating the identification of single-base molecules using recognition tunnelling.

    CAS  Google Scholar 

  42. 42

    Ohshiro, T. et al. Single-molecule electrical random resequencing of DNA and RNA. Sci. Rep. 2, 501 (2012).

    Google Scholar 

  43. 43

    Ewing, B. & Green, P. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).

    CAS  Google Scholar 

  44. 44

    Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998).

    CAS  Google Scholar 

  45. 45

    Churchill, G. A. & Waterman, M. S. The accuracy of DNA-sequences — estimating sequence quality. Genomics 14, 89–98 (1992).

    CAS  Google Scholar 

  46. 46

    Agrait, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    CAS  Google Scholar 

  47. 47

    Liang, X. G. & Chou, S. Y. Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. Nano Lett. 8, 1472–1476 (2008).

    CAS  Google Scholar 

  48. 48

    Chang, S. et al. Tunnelling readout of hydrogen-bonding-based recognition. Nature Nanotech. 4, 297–301 (2009).

    CAS  Google Scholar 

  49. 49

    Chang, S. A. et al. Electronic signatures of all four DNA nucleosides in a tunneling gap. Nano Lett. 10, 1070–1075 (2010).

    CAS  Google Scholar 

  50. 50

    Taniguchi, M., Tsutsui, M., Yokota, K. & Kawai, T. Fabrication of the gating nanopore device. Appl. Phys. Lett. 95, 123701 (2009).

    Google Scholar 

  51. 51

    Ivanov, A. P. et al. DNA tunneling detector embedded in a nanopore. Nano Lett. 11, 279–285 (2011).

    CAS  Google Scholar 

  52. 52

    Fanget, A. et al. Nanopore integrated nanogaps for DNA detection. Nano Lett. 14, 244–249 (2014).

    CAS  Google Scholar 

  53. 53

    Tsutsui, M. et al. Transverse electric field dragging of DNA in a nanochannel. Sci. Rep. 2, 394 (2012).

    Google Scholar 

  54. 54

    Xie, P., Xiong, Q. H., Fang, Y., Qing, Q. & Lieber, C. M. Local electrical potential detection of DNA by nanowire–nanopore sensors. Nature Nanotech. 7, 119–125 (2012).

    CAS  Google Scholar 

  55. 55

    Puster, M., Rodriguez-Manzo, J. A., Balan, A. & Drndic, M. Toward sensitive graphene nanoribbon–nanopore devices by preventing electron beam-induced damage. ACS Nano 7, 11283–11289 (2013).

    CAS  Google Scholar 

  56. 56

    Traversi, F. et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotech. 8, 939–945 (2013).

    CAS  Google Scholar 

  57. 57

    Tsutsui, M., Taniguchi, M., Yokota, K. & Kawai, T. Identifying single nucleotides by tunnelling current. Nature Nanotech. 5, 286–290 (2010). Proof-of-principle experiments that identify single nucleotides via tunnelling currents using nanogap electrodes.

    CAS  Google Scholar 

  58. 58

    Tsutsui, M. et al. Electrical detection of single methylcytosines in a DNA oligomer. J. Am. Chem. Soc. 133, 9124–9128 (2011).

    CAS  Google Scholar 

  59. 59

    Shendure, J. & Ji, H. L. Next-generation DNA sequencing. Nature Biotechnol. 26, 1135–1145 (2008).

    CAS  Google Scholar 

  60. 60

    Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nature Rev. Mol. Cell Biol. 10, 126–139 (2009).

    CAS  Google Scholar 

  61. 61

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  62. 62

    Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    CAS  Google Scholar 

  63. 63

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Google Scholar 

  64. 64

    Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    CAS  Google Scholar 

  65. 65

    Farimani, A. B., Min, K. & Aluru, N. R. DNA base detection using a single-layer MoS2 . ACS Nano 8, 7914–7922 (2014).

    CAS  Google Scholar 

  66. 66

    Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    CAS  Google Scholar 

  67. 67

    Schneider, G. F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).

    CAS  Google Scholar 

  68. 68

    Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    CAS  Google Scholar 

  69. 69

    Postma, H. W. C. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10, 420–425 (2010).

    CAS  Google Scholar 

  70. 70

    Nelson, T., Zhang, B. & Prezhdo, O. V. Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett. 10, 3237–3242 (2010).

    CAS  Google Scholar 

  71. 71

    Saha, K. K., Drndic, M. & Nikolic, B. K. DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore. Nano Lett. 12, 50–55 (2012).

    CAS  Google Scholar 

  72. 72

    Girdhar, A., Sathe, C., Schulten, K. & Leburton, J. P. Graphene quantum point contact transistor for DNA sensing. Proc. Natl Acad. Sci. USA 110, 16748–16753 (2013).

    CAS  Google Scholar 

  73. 73

    Feliciano, G. T. et al. Capacitive DNA detection driven by electronic charge fluctuations in a graphene nanopore. Phys. Rev. Appl. 3, 034003 (2015).

    Google Scholar 

  74. 74

    Liu, K., Feng, J. D., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8, 2504–2511 (2014).

    CAS  Google Scholar 

  75. 75

    Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nature Nanotech. 10, 1070–1076 (2015).

    CAS  Google Scholar 

  76. 76

    Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3, 710–720 (2003).

    CAS  Google Scholar 

  77. 77

    Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    CAS  Google Scholar 

  78. 78

    Lewis, R. J. & Garcia, M. L. Therapeutic potential of venom peptides. Nature Rev. Drug Discov. 2, 790–802 (2003).

    CAS  Google Scholar 

  79. 79

    Peschel, A. & Sahl, H. G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nature Rev. Microbiol. 4, 529–536 (2006).

    CAS  Google Scholar 

  80. 80

    Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature Rev. Mol. Cell Biol. 8, 101–112 (2007).

    CAS  Google Scholar 

  81. 81

    Hancock, R. E. W. & Sahl, H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnol. 24, 1551–1557 (2006).

    CAS  Google Scholar 

  82. 82

    Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Rev. Microbiol. 3, 238–250 (2005).

    CAS  Google Scholar 

  83. 83

    Hruby, V. J. Designing peptide receptor agonists and antagonists. Nature Rev. Drug Discov. 1, 847–858 (2002).

    CAS  Google Scholar 

  84. 84

    Purcell, A. W., McCluskey, J. & Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. Nature Rev. Drug Discov. 6, 404–414 (2007).

    CAS  Google Scholar 

  85. 85

    Fjell, C. D., Hiss, J. A., Hancock, R. E. W. & Schneider, G. Designing antimicrobial peptides: form follows function. Nature Rev. Drug Discov. 11, 37–51 (2012).

    CAS  Google Scholar 

  86. 86

    Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nature Biotechnol. 21, 255–261 (2003).

    CAS  Google Scholar 

  87. 87

    Bode, A. M. & Dong, Z. G. Post-translational modification of p53 in tumorigenesis. Nature Rev. Cancer 4, 793–805 (2004).

    CAS  Google Scholar 

  88. 88

    Westermann, S. & Weber, K. Post-translational modifications regulate microtubule function. Nature Rev. Mol. Cell Biol. 4, 938–947 (2003).

    CAS  Google Scholar 

  89. 89

    Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nature Rev. Mol. Cell Biol. 8, 139–148 (2007).

    CAS  Google Scholar 

  90. 90

    Walsh, G. & Jefferis, R. Post-translational modifications in the context of therapeutic proteins. Nature Biotechnol. 24, 1241–1252 (2006).

    CAS  Google Scholar 

  91. 91

    Edman, P. Method for determination of the amino acid sequence in peptides. Acta Chem. Scand. 4, 283–293 (1950).

    CAS  Google Scholar 

  92. 92

    Steen, H. & Mann, M. The ABC's (and XYZ's) of peptide sequencing. Nature Rev. Mol. Cell Biol. 5, 699–711 (2004).

    CAS  Google Scholar 

  93. 93

    Witze, E. S., Old, W. M., Resing, K. A. & Ahn, N. G. Mapping protein post-translational modifications with mass spectrometry. Nature Methods 4, 798–806 (2007).

    CAS  Google Scholar 

  94. 94

    Zhao, Y. A. et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nature Nanotech. 9, 466–473 (2014). Proof-of-principle experiments demonstrating the discrimination of amino acid molecules and peptides using recognition tunnelling.

    CAS  Google Scholar 

  95. 95

    Ohshiro, T. et al. Detection of post-translational modifications in single peptides using electron tunnelling currents. Nature Nanotech. 9, 835–840 (2014). Proof-of-principle experiments demonstrating the identification of amino acid molecules and the partial sequencing of peptides via tunnelling currents using nanogap electrodes.

    CAS  Google Scholar 

  96. 96

    Chang, C. C. & Lin, C. J. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011).

    Google Scholar 

  97. 97

    Burges, C. J. C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998).

    Google Scholar 

  98. 98

    Hsu, C. W. & Lin, C. J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networ. 13, 415–425 (2002).

    Google Scholar 

  99. 99

    Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002).

    Google Scholar 

  100. 100

    Suykens, J. A. K. & Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 9, 293–300 (1999).

    Google Scholar 

  101. 101

    Brown, M. P. S. et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl Acad. Sci. USA 97, 262–267 (2000).

    CAS  Google Scholar 

  102. 102

    Liu, Z. et al. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11, 2032–2037 (2011).

    CAS  Google Scholar 

  103. 103

    Lee, M. H. et al. A low-noise solid-state nanopore platform based on a highly insulating substrate. Sci. Rep. 4, 7448 (2014).

    Google Scholar 

  104. 104

    Kumar, A., Park, K. B., Kim, H. M. & Kim, K. B. Noise and its reduction in graphene based nanopore devices. Nanotechnology 24, 495503–495509 (2013).

    Google Scholar 

  105. 105

    Strick, T., Allemand, J. F., Croquette, V. & Bensimon, D. Twisting and stretching single DNA molecules. Prog. Biophys. Mol. Biol. 74, 115–140 (2000).

    CAS  Google Scholar 

  106. 106

    Luan, B. Q., Martyna, G. & Stolovitzky, G. Characterizing and controlling the motion of ssDNA in a solid-state nanopore. Biophys. J. 101, 2214–2222 (2011).

    CAS  Google Scholar 

  107. 107

    Harrer, S. et al. Electrochemical characterization of thin film electrodes toward developing a DNA transistor. Langmuir 26, 19191–19198 (2010).

    CAS  Google Scholar 

  108. 108

    Zwolak, M., Lagerqvist, J. & Di Ventra, M. Quantized ionic conductance in nanopores. Phys. Rev. Lett. 103, 128102 (2009).

    Google Scholar 

  109. 109

    Krems, M. & Di Ventra, M. Ionic coulomb blockade in nanopores. J. Phys. Condens. Matter 25, 065101–065105 (2013).

    Google Scholar 

Download references

Acknowledgements

We thank M. Tsutsui and K. Yokota for help with drawing the figures. M.D.V. acknowledges support from the NIH-National Human Genome Research Institute. M.T. thanks KAKENHI Grant No. 26220603 for financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Massimiliano Di Ventra or Masateru Taniguchi.

Ethics declarations

Competing interests

M.D.V. declares that he is scientific advisor of the company Quantum Biosystems and M.T. is board director and chief scientific officer of the same company. Quantum Biosystems (www.quantumbiosystems.com) is developing quantum sequencers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Ventra, M., Taniguchi, M. Decoding DNA, RNA and peptides with quantum tunnelling. Nature Nanotech 11, 117–126 (2016). https://doi.org/10.1038/nnano.2015.320

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research