Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Amyloid–carbon hybrid membranes for universal water purification


Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic representation of the composite activated carbon–amyloid fibril adsorber membrane and the heavy metal ion purification process for polluted water.
Figure 2: Concentrations of heavy metal and radioactive pollutants before and after filtration through the amyloid fibril–activated carbon hybrid adsorber membrane.
Figure 3: Efficiency of the composite membrane in removing pollutants simultaneously and after several cycles of filtration.
Figure 4: Turning toxic gold ions into non-toxic gold nanoparticles and films.


  1. 1

    Donald, R. L. Water Pollution (San Val, 2002).

    Google Scholar 

  2. 2

    Montgomery, M. A. & Elimelech, M. Water and sanitation in developing countries: including health in the equation. Environ. Sci. Technol. 41, 17–24 (2007).

    Article  Google Scholar 

  3. 3

    Goel, P. K. Water Pollution: Causes, Effects and Control (New Age International, 2006).

    Google Scholar 

  4. 4

    Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Qiu, J. China faces up to groundwater crisis. Nature News 466, 308 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Ibanez, J. G., Hernandez-Esparza, M., Doria-Serrano, C., Fregoso-Infante, A. & Singh, M. M. Environmental Chemistry: Fundamentals (Springer Science & Business Media, 2010).

    Google Scholar 

  7. 7

    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–638 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Mearns, A. J. et al. Effects of pollution on marine organisms. Water Environ. Res. 86, 1869–1954 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Peters, E. C., Gassman, N. J., Firman, J. C., Richmond, R. H. & Power, E. A. Ecotoxicology of tropical marine ecosystems. Environ. Toxicol. Chem. 16, 12–40 (1997).

    CAS  Article  Google Scholar 

  10. 10

    La Rivière, J. W. M. la. Threats to the world's water. Sci. Am. 261, 80–94 (1989).

    Article  Google Scholar 

  11. 11

    Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Banks, D., Younger, P. L., Arnesen, R.-T., Iversen, E. R. & Banks, S. B. Mine-water chemistry: the good, the bad and the ugly. Environ. Geol. 32, 157–174 (1997).

    Article  Google Scholar 

  13. 13

    Fu, F. & Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92, 407–418 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Fu, F. et al. Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant. Chemosphere 69, 1783–1789 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Ghosh, P., Samanta, A. N. & Ray, S. Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination 266, 213–217 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Kurniawan, T. A., Chan, G. Y. S., Lo, W.-H. & Babel, S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118, 83–98 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Barakat, M. A. New trends in removing heavy metals from industrial wastewater. Arabian J. Chem. 4, 361–377 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Inglezakis, V. J., Stylianou, M. A., Gkantzou, D. & Loizidou, M. D. Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination 210, 248–256 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Argun, M. E. Use of clinoptilolite for the removal of nickel ions from water: kinetics and thermodynamics. J. Hazard. Mater. 150, 587–595 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Shafaei, A., Rezayee, M., Arami, M. & Nikazar, M. Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process. Desalination 260, 23–28 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Khelifa, A., Moulay, S. & Naceur, A. W. Treatment of metal finishing effluents by the electroflotation technique. Desalination 181, 27–33 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Vandezande, P., Gevers, L. E. M. & Vankelecom, I. F. J. Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 37, 365–405 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Huang, J.-H. et al. Adsorption of surfactant micelles and Cd2+/Zn2+ in micellar-enhanced ultrafiltration. J. Hazard. Mater. 183, 287–293 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Jellouli, E. D., Gzara, L., Ramzi Ben Romdhane, M. & Dhahbi, M. Cadmium removal from aqueous solutions by polyelectrolyte enhanced ultrafiltration. Desalination 246, 363–369 (2009).

    Article  Google Scholar 

  25. 25

    Zhang, L., Wu, Y., Qu, X., Li, Z. & Ni, J. Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body. J. Environ. Sci. 21, 764–769 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Murthy, Z. V. P. & Chaudhari, L. B. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 160, 70–77 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Krogman, K. C., Lowery, J. L., Zacharia, N. S., Rutledge, G. C. & Hammond, P. T. Spraying asymmetry into functional membranes layer-by-layer. Nature Mater. 8, 512–518 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Yuan, J. et al. Superwetting nanowire membranes for selective absorption. Nature Nanotech. 3, 332–336 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Murthy, Z. V. P. & Chaudhari, L. B. Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler–Kedem model. Chem. Eng. J. 150, 181–187 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Rufo, C. M. et al. Short peptides self-assemble to produce catalytic amyloids. Nature Chem. 6, 303–309 (2014).

    CAS  Article  Google Scholar 

  31. 31

    Banfalvi, G. Cellular Effects of Heavy Metals (Springer Science & Business Media, 2011).

    Book  Google Scholar 

  32. 32

    Adamcik, J. et al. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nature Nanotech. 5, 423–428 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Li, C., Adamcik, J. & Mezzenga, R. Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nature Nanotech. 7, 421–427 (2012).

    CAS  Article  Google Scholar 

  34. 34

    Bolisetty, S. et al. Amyloid-mediated synthesis of giant, fluorescent, gold single crystals and their hybrid sandwiched composites driven by liquid crystalline interactions. J. Colloid Interf. Sci. 361, 90–96 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Sahihi, M., Ghayeb, Y. & Khalegh, B. A. Interaction of β-lactoglobulin with resveratrol: molecular docking and molecular dynamics simulation studies. Chem. Biochem. Eng. Q. 27, 417–422 (2013).

    CAS  Google Scholar 

  36. 36

    Kontopidis, G., Holt, C. & Sawyer, L. β-lactoglobulin: binding properties, structure, and function. J. Dairy Sci. 87, 785–796 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Akkermans, C. et al. Peptides are building blocks of heat-induced fibrillar protein aggregates of β-lactoglobulin formed at pH 2. Biomacromolecules 9, 1474–1479 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Goldschmidt, L., Teng, P. K., Riek, R. & Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl Acad. Sci. USA 107, 3487–3492 (2010).

    CAS  Article  Google Scholar 

  39. 39

    Nanda, J., Biswas, A., Adhikari, B. & Banerjee, A. A gel-based trihybrid system containing nanofibers, nanosheets, and nanoparticles: modulation of the rheological property and catalysis. Angew. Chem. Int. Ed. 52, 5041–5045 (2013).

    CAS  Article  Google Scholar 

  40. 40

    Jung, J.-M., Savin, G., Pouzot, M., Schmitt, C. & Mezzenga, R. Structure of heat-induced β-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate. Biomacromolecules 9, 2477–2486 (2008).

    CAS  Article  Google Scholar 

Download references


The authors thank C. Zeder (ETHZ) for assistance during AAS measurements, J. Adamcik for atomic force microscopy measurements, S. Handschin for electron microscopy, J. Reuteler for lithography support and S. Assenza (ETHZ) for discussions on adsorption isotherms. Support from the ETHZ Microscopy Center (ScopeM) is gratefully acknowledged. R. Wepf and L. Wyss (ETHZ) are thanked for kindly providing radioactive uranyl acetate and phosphorus-32, respectively.

Author information




S.B. performed the experiments, analysed the results and wrote the manuscript. R.M. designed the study, analysed the data and wrote the manuscript. Both authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Raffaele Mezzenga.

Ethics declarations

Competing interests

The authors are the inventors of a patent filed by ETH Zurich related to the work presented here (EP2921216 and WO2015140074).

Supplementary information

Supplementary information

Supplementary information (PDF 4456 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bolisetty, S., Mezzenga, R. Amyloid–carbon hybrid membranes for universal water purification. Nature Nanotech 11, 365–371 (2016).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research