Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amyloid–carbon hybrid membranes for universal water purification

Abstract

Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the composite activated carbon–amyloid fibril adsorber membrane and the heavy metal ion purification process for polluted water.
Figure 2: Concentrations of heavy metal and radioactive pollutants before and after filtration through the amyloid fibril–activated carbon hybrid adsorber membrane.
Figure 3: Efficiency of the composite membrane in removing pollutants simultaneously and after several cycles of filtration.
Figure 4: Turning toxic gold ions into non-toxic gold nanoparticles and films.

Similar content being viewed by others

References

  1. Donald, R. L. Water Pollution (San Val, 2002).

    Google Scholar 

  2. Montgomery, M. A. & Elimelech, M. Water and sanitation in developing countries: including health in the equation. Environ. Sci. Technol. 41, 17–24 (2007).

    Article  Google Scholar 

  3. Goel, P. K. Water Pollution: Causes, Effects and Control (New Age International, 2006).

    Google Scholar 

  4. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  Google Scholar 

  5. Qiu, J. China faces up to groundwater crisis. Nature News 466, 308 (2010).

    Article  CAS  Google Scholar 

  6. Ibanez, J. G., Hernandez-Esparza, M., Doria-Serrano, C., Fregoso-Infante, A. & Singh, M. M. Environmental Chemistry: Fundamentals (Springer Science & Business Media, 2010).

    Google Scholar 

  7. Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–638 (2001).

    Article  CAS  Google Scholar 

  8. Mearns, A. J. et al. Effects of pollution on marine organisms. Water Environ. Res. 86, 1869–1954 (2014).

    Article  CAS  Google Scholar 

  9. Peters, E. C., Gassman, N. J., Firman, J. C., Richmond, R. H. & Power, E. A. Ecotoxicology of tropical marine ecosystems. Environ. Toxicol. Chem. 16, 12–40 (1997).

    Article  CAS  Google Scholar 

  10. La Rivière, J. W. M. la. Threats to the world's water. Sci. Am. 261, 80–94 (1989).

    Article  Google Scholar 

  11. Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    Article  CAS  Google Scholar 

  12. Banks, D., Younger, P. L., Arnesen, R.-T., Iversen, E. R. & Banks, S. B. Mine-water chemistry: the good, the bad and the ugly. Environ. Geol. 32, 157–174 (1997).

    Article  Google Scholar 

  13. Fu, F. & Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92, 407–418 (2011).

    Article  CAS  Google Scholar 

  14. Fu, F. et al. Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant. Chemosphere 69, 1783–1789 (2007).

    Article  CAS  Google Scholar 

  15. Ghosh, P., Samanta, A. N. & Ray, S. Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination 266, 213–217 (2011).

    Article  CAS  Google Scholar 

  16. Kurniawan, T. A., Chan, G. Y. S., Lo, W.-H. & Babel, S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118, 83–98 (2006).

    Article  CAS  Google Scholar 

  17. Barakat, M. A. New trends in removing heavy metals from industrial wastewater. Arabian J. Chem. 4, 361–377 (2011).

    Article  CAS  Google Scholar 

  18. Inglezakis, V. J., Stylianou, M. A., Gkantzou, D. & Loizidou, M. D. Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination 210, 248–256 (2007).

    Article  CAS  Google Scholar 

  19. Argun, M. E. Use of clinoptilolite for the removal of nickel ions from water: kinetics and thermodynamics. J. Hazard. Mater. 150, 587–595 (2008).

    Article  CAS  Google Scholar 

  20. Shafaei, A., Rezayee, M., Arami, M. & Nikazar, M. Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process. Desalination 260, 23–28 (2010).

    Article  CAS  Google Scholar 

  21. Khelifa, A., Moulay, S. & Naceur, A. W. Treatment of metal finishing effluents by the electroflotation technique. Desalination 181, 27–33 (2005).

    Article  CAS  Google Scholar 

  22. Vandezande, P., Gevers, L. E. M. & Vankelecom, I. F. J. Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 37, 365–405 (2008).

    Article  CAS  Google Scholar 

  23. Huang, J.-H. et al. Adsorption of surfactant micelles and Cd2+/Zn2+ in micellar-enhanced ultrafiltration. J. Hazard. Mater. 183, 287–293 (2010).

    Article  CAS  Google Scholar 

  24. Jellouli, E. D., Gzara, L., Ramzi Ben Romdhane, M. & Dhahbi, M. Cadmium removal from aqueous solutions by polyelectrolyte enhanced ultrafiltration. Desalination 246, 363–369 (2009).

    Article  Google Scholar 

  25. Zhang, L., Wu, Y., Qu, X., Li, Z. & Ni, J. Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body. J. Environ. Sci. 21, 764–769 (2009).

    Article  CAS  Google Scholar 

  26. Murthy, Z. V. P. & Chaudhari, L. B. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 160, 70–77 (2008).

    Article  CAS  Google Scholar 

  27. Krogman, K. C., Lowery, J. L., Zacharia, N. S., Rutledge, G. C. & Hammond, P. T. Spraying asymmetry into functional membranes layer-by-layer. Nature Mater. 8, 512–518 (2009).

    Article  CAS  Google Scholar 

  28. Yuan, J. et al. Superwetting nanowire membranes for selective absorption. Nature Nanotech. 3, 332–336 (2008).

    Article  CAS  Google Scholar 

  29. Murthy, Z. V. P. & Chaudhari, L. B. Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler–Kedem model. Chem. Eng. J. 150, 181–187 (2009).

    Article  CAS  Google Scholar 

  30. Rufo, C. M. et al. Short peptides self-assemble to produce catalytic amyloids. Nature Chem. 6, 303–309 (2014).

    Article  CAS  Google Scholar 

  31. Banfalvi, G. Cellular Effects of Heavy Metals (Springer Science & Business Media, 2011).

    Book  Google Scholar 

  32. Adamcik, J. et al. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nature Nanotech. 5, 423–428 (2010).

    Article  CAS  Google Scholar 

  33. Li, C., Adamcik, J. & Mezzenga, R. Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nature Nanotech. 7, 421–427 (2012).

    Article  CAS  Google Scholar 

  34. Bolisetty, S. et al. Amyloid-mediated synthesis of giant, fluorescent, gold single crystals and their hybrid sandwiched composites driven by liquid crystalline interactions. J. Colloid Interf. Sci. 361, 90–96 (2011).

    Article  CAS  Google Scholar 

  35. Sahihi, M., Ghayeb, Y. & Khalegh, B. A. Interaction of β-lactoglobulin with resveratrol: molecular docking and molecular dynamics simulation studies. Chem. Biochem. Eng. Q. 27, 417–422 (2013).

    CAS  Google Scholar 

  36. Kontopidis, G., Holt, C. & Sawyer, L. β-lactoglobulin: binding properties, structure, and function. J. Dairy Sci. 87, 785–796 (2004).

    Article  CAS  Google Scholar 

  37. Akkermans, C. et al. Peptides are building blocks of heat-induced fibrillar protein aggregates of β-lactoglobulin formed at pH 2. Biomacromolecules 9, 1474–1479 (2008).

    Article  CAS  Google Scholar 

  38. Goldschmidt, L., Teng, P. K., Riek, R. & Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl Acad. Sci. USA 107, 3487–3492 (2010).

    Article  CAS  Google Scholar 

  39. Nanda, J., Biswas, A., Adhikari, B. & Banerjee, A. A gel-based trihybrid system containing nanofibers, nanosheets, and nanoparticles: modulation of the rheological property and catalysis. Angew. Chem. Int. Ed. 52, 5041–5045 (2013).

    Article  CAS  Google Scholar 

  40. Jung, J.-M., Savin, G., Pouzot, M., Schmitt, C. & Mezzenga, R. Structure of heat-induced β-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate. Biomacromolecules 9, 2477–2486 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Zeder (ETHZ) for assistance during AAS measurements, J. Adamcik for atomic force microscopy measurements, S. Handschin for electron microscopy, J. Reuteler for lithography support and S. Assenza (ETHZ) for discussions on adsorption isotherms. Support from the ETHZ Microscopy Center (ScopeM) is gratefully acknowledged. R. Wepf and L. Wyss (ETHZ) are thanked for kindly providing radioactive uranyl acetate and phosphorus-32, respectively.

Author information

Authors and Affiliations

Authors

Contributions

S.B. performed the experiments, analysed the results and wrote the manuscript. R.M. designed the study, analysed the data and wrote the manuscript. Both authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Raffaele Mezzenga.

Ethics declarations

Competing interests

The authors are the inventors of a patent filed by ETH Zurich related to the work presented here (EP2921216 and WO2015140074).

Supplementary information

Supplementary information

Supplementary information (PDF 4456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolisetty, S., Mezzenga, R. Amyloid–carbon hybrid membranes for universal water purification. Nature Nanotech 11, 365–371 (2016). https://doi.org/10.1038/nnano.2015.310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing