Graphene nanodevices for DNA sequencing

Abstract

Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with nanopores. Owing to its unique structure and properties, graphene provides interesting opportunities for the development of a new sequencing technology. In recent years, a wide range of creative ideas for graphene sequencers have been theoretically proposed and the first experimental demonstrations have begun to appear. Here, we review the different approaches to using graphene nanodevices for DNA sequencing, which involve DNA passing through graphene nanopores, nanogaps, and nanoribbons, and the physisorption of DNA on graphene nanostructures. We discuss the advantages and problems of each of these key techniques, and provide a perspective on the use of graphene in future DNA sequencing technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Four new concepts using graphene nanostructures for DNA sequencing.
Figure 2: DNA detection with ionic current measurements through graphene nanopores.
Figure 3: Graphene nanogaps for DNA sequence detection.
Figure 4: Graphene nanoribbons with a nanopore for DNA sequencing.
Figure 5: DNA detection methods based on DNA physisorption.

References

  1. 1

    Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    CAS  Google Scholar 

  3. 3

    Shendure, J. & Ji, H. Next-generation DNA sequencing. Nature Biotechnol. 26, 1135–1145 (2008).

    CAS  Google Scholar 

  4. 4

    Metzker, M. L. Sequencing technologies — the next generation. Nature Rev. Genet. 11, 31–46 (2010).

    CAS  Google Scholar 

  5. 5

    Ansorge, W. J. Next-generation DNA sequencing techniques. New Biotechnol. 25, 195–203 (2009).

    CAS  Google Scholar 

  6. 6

    Steinbock, L. J. & Radenovic, A. The emergence of nanopores in next-generation sequencing. Nanotechnology 26, 074003 (2015).

    CAS  Google Scholar 

  7. 7

    Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    CAS  Google Scholar 

  8. 8

    Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 341 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Ferrarini, M. et al. An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genomics 14, 670 (2013).

    CAS  Google Scholar 

  10. 10

    Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome. Nature Biotechnol. 31, 1009–1014 (2013).

    CAS  Google Scholar 

  11. 11

    Mikheyev, A. S. & Tin, M. M. A first look at the Oxford Nanopore MinION sequencer. Mol. Ecol. Resour. 14, 1097–1102 (2014).

    CAS  Google Scholar 

  12. 12

    Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nature Methods 12, 351–356 (2015).

    CAS  Google Scholar 

  13. 13

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  14. 14

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  16. 16

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    CAS  Google Scholar 

  17. 17

    Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).

    CAS  Google Scholar 

  18. 18

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    CAS  Google Scholar 

  19. 19

    Pereira, V., Castro Neto, A. & Peres, N. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).

    Google Scholar 

  20. 20

    Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    CAS  Google Scholar 

  21. 21

    Morozov, S. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

    CAS  Google Scholar 

  22. 22

    Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    CAS  Google Scholar 

  23. 23

    Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    CAS  Google Scholar 

  24. 24

    Colombini, M. Pore size and properties of channels from mitochondria isolated from Neurospora crassa. J. Membrane Biol. 53, 79–84 (1980).

    CAS  Google Scholar 

  25. 25

    Krasilnikov, O., Sabirov, R., Ternovsky, V., Merzliak, P. & Muratkhodjaev, J. A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol. Lett. 105, 93–100 (1992).

    Google Scholar 

  26. 26

    Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    CAS  Google Scholar 

  27. 27

    Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nature Biotechnol. 30, 344–348 (2012).

    CAS  Google Scholar 

  28. 28

    Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nature Biotechnol. 30, 349–53 (2012).

    CAS  Google Scholar 

  29. 29

    Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    CAS  Google Scholar 

  30. 30

    Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    CAS  Google Scholar 

  31. 31

    Garaj, S., Liu, S., Golovchenko, J. A. & Branton, D. Molecule-hugging graphene nanopores. Proc. Natl Acad. Sci. USA 110, 12192–12196 (2013).

    CAS  Google Scholar 

  32. 32

    Sathe, C., Zou, X., Leburton, J.-P. & Schulten, K. Computational investigation of DNA detection using graphene nanopores. ACS Nano 5, 8842–8851 (2011).

    CAS  Google Scholar 

  33. 33

    Wells, D. B., Belkin, M., Comer, J. & Aksimentiev, A. Assessing graphene nanopores for sequencing DNA. Nano Lett. 12, 4117–4123 (2012).

    CAS  Google Scholar 

  34. 34

    Liang, L. et al. Theoretical study on key factors in DNA sequencing with graphene nanopores. RSC Adv. 3, 2445–2453 (2013).

    CAS  Google Scholar 

  35. 35

    Schneider, G. F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).

    CAS  Google Scholar 

  36. 36

    Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    CAS  Google Scholar 

  37. 37

    Schneider, G. F. et al. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation. Nature Commun. 4, 2619 (2013).

    Google Scholar 

  38. 38

    Banerjee, S. et al. Slowing DNA transport using graphene–DNA interactions. Adv. Funct. Mater. 25, 936–946 (2014).

    Google Scholar 

  39. 39

    Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nature Methods 9, 487–492 (2012).

    CAS  Google Scholar 

  40. 40

    Plesa, C., van Loo, N., Ketterer, P., Dietz, H. & Dekker, C. Velocity of DNA during translocation through a solid-state nanopore. Nano Lett. 15, 732–737 (2015).

    CAS  Google Scholar 

  41. 41

    Heerema, S. J. et al. 1/f noise in graphene nanopores. Nanotechnology 26, 074001 (2015).

    CAS  Google Scholar 

  42. 42

    Venkatesan, B. M. et al. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA–protein complexes. ACS Nano 6, 441–450 (2012).

    CAS  Google Scholar 

  43. 43

    Banerjee, S. et al. Electrochemistry at the edge of a single graphene layer in a nanopore. ACS Nano 7, 834–843 (2013).

    CAS  Google Scholar 

  44. 44

    Lee, M.-H. et al. A low-noise solid-state nanopore platform based on a highly insulating substrate. Sci. Rep. 4, 7448 (2014).

    Google Scholar 

  45. 45

    Postma, H. W. C. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10, 420–425 (2010).

    CAS  Google Scholar 

  46. 46

    Zhao, Q. et al. Nanopore-based DNA analysis via graphene electrodes. J. Nanomater. 2012, 1–5 (2012).

    Google Scholar 

  47. 47

    Zhang, H. et al. Detection of nucleic acids by graphene-based devices: a first-principles study. J. Appl. Phys. 115, 133701 (2014).

    Google Scholar 

  48. 48

    Jeong, H. et al. Quantum interference in DNA bases probed by graphene nanoribbons. Appl. Phys. Lett. 103, 023701 (2013).

    Google Scholar 

  49. 49

    Prasongkit, J., Grigoriev, A., Pathak, B., Ahuja, R. & Scheicher, R. H. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. Nano Lett. 11, 1941–1945 (2011).

    CAS  Google Scholar 

  50. 50

    Prasongkit, J., Grigoriev, A., Pathak, B., Ahuja, R. & Scheicher, R. H. Theoretical study of electronic transport through DNA nucleotides in a double-functionalized graphene nanogap. J. Phys. Chem. C 117, 15421–15428 (2013).

    CAS  Google Scholar 

  51. 51

    He, Y. et al. Enhanced DNA sequencing performance through edge-hydrogenation of graphene electrodes. Adv. Funct. Mater. 21, 2674–2679 (2011).

    CAS  Google Scholar 

  52. 52

    Huang, S. et al. Identifying single bases in a DNA oligomer with electron tunnelling. Nature Nanotech. 5, 868–873 (2010).

    CAS  Google Scholar 

  53. 53

    Lindsay, S. et al. Recognition tunneling. Nanotechnology 21, 262001 (2010).

    Google Scholar 

  54. 54

    Krishnakumar, P. et al. Slowing DNA translocation through a nanopore using a functionalized electrode. ACS Nano 7, 10319–10326 (2013).

    CAS  Google Scholar 

  55. 55

    Ivanov, A. P. et al. DNA tunneling detector embedded in a nanopore. Nano Lett. 11, 279–285 (2011).

    CAS  Google Scholar 

  56. 56

    Tsutsui, M., Taniguchi, M., Yokota, K. & Kawai, T. Identifying single nucleotides by tunnelling current. Nature Nanotech. 5, 286–290 (2010).

    CAS  Google Scholar 

  57. 57

    Tsutsui, M. et al. Single-molecule sensing electrode embedded in-plane nanopore. Sci. Rep. 1, 46 (2011).

    Google Scholar 

  58. 58

    Bagci, V. M. K. & Kaun, C.-C. Recognizing nucleotides by cross-tunneling currents for DNA sequencing. Phys. Rev. E 84, 011917 (2011).

    CAS  Google Scholar 

  59. 59

    Chen, X., Rungger, I., Pemmaraju, C. D., Schwingenschlögl, U. & Sanvito, S. First principles study of high-conductance DNA sequencing with carbon nanotube electrodes. Phys. Rev. B 85, 115436 (2012).

    Google Scholar 

  60. 60

    Prins, F. et al. Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011).

    CAS  Google Scholar 

  61. 61

    Nef, C. et al. High-yield fabrication of nm-size gaps in monolayer CVD graphene. Nanoscale 6, 7249–7254 (2014).

    CAS  Google Scholar 

  62. 62

    Sadeghi, H. et al. Conductance enlargement in picoscale electroburnt graphene nanojunctions. Proc. Natl Acad. Sci. USA 112, 2658–2663 (2015).

    CAS  Google Scholar 

  63. 63

    Island, J. O. et al. Fabrication of hybrid molecular devices using multi-layer graphene break junctions. J. Phys. Condens. Matter 26, 474205 (2014).

    CAS  Google Scholar 

  64. 64

    Cao, Y. et al. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. 124, 12394–12398 (2012).

    Google Scholar 

  65. 65

    Wallace, P. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    CAS  Google Scholar 

  66. 66

    Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn 65, 1920–1923 (1996).

    CAS  Google Scholar 

  67. 67

    Wakabayashi, K., Fujita, M., Ajiki, H. & Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271–8282 (1999).

    CAS  Google Scholar 

  68. 68

    Ezawa, M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B 73, 045432 (2006).

    Google Scholar 

  69. 69

    Brey, L. & Fertig, H. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006).

    Google Scholar 

  70. 70

    Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    CAS  Google Scholar 

  71. 71

    Sasaki, K.-i., Murakami, S. & Saito, R. Gauge field for edge state in graphene. J. Phys. Soc. Jpn 75, 074713 (2006).

    Google Scholar 

  72. 72

    Nelson, T., Zhang, B. & Prezhdo, O. V. Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett. 10, 3237–3242 (2010).

    CAS  Google Scholar 

  73. 73

    Ouyang, F.-P., Peng, S.-L., Zhang, H., Weng, L.-B. & Xu, H. A biosensor based on graphene nanoribbon with nanopores: a first-principles devices-design. Chinese Phys. B 20, 058504 (2011).

    Google Scholar 

  74. 74

    Saha, K. K., Drndić, M. & Nikolić, B. K. DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore. Nano Lett. 12, 50–55 (2012).

    CAS  Google Scholar 

  75. 75

    Avdoshenko, S. M. et al. Dynamic and electronic transport properties of DNA translocation through graphene nanopores. Nano Lett. 13, 1969–1976 (2013).

    CAS  Google Scholar 

  76. 76

    Girdhar, A., Sathe, C., Schulten, K. & Leburton, J.-P. Graphene quantum point contact transistor for DNA sensing. Proc. Natl Acad. Sci. USA 110, 16748–16753 (2013).

    CAS  Google Scholar 

  77. 77

    Ahmed, T., Haraldsen, J. T., Zhu, J.-X. & Balatsky, A. V. Next-generation epigenetic detection technique: identifying methylated cytosine using graphene nanopore. J. Phys. Chem. Lett. 5, 2601–2607 (2014).

    CAS  Google Scholar 

  78. 78

    Sadeghi, H. et al. Graphene sculpturene nanopores for DNA nucleobase sensing. J. Phys. Chem. B 118, 6908–6914 (2014).

    CAS  Google Scholar 

  79. 79

    Ahmed, T. et al. Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases. Nanotechnology 25, 125705 (2014).

    Google Scholar 

  80. 80

    Traversi, F. et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotech. 8, 939–945 (2013).

    CAS  Google Scholar 

  81. 81

    Lu, Y., Merchant, C. A., Drndić, M. & Johnson, A. T. C. In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope. Nano Lett. 11, 5184–5188 (2011).

    CAS  Google Scholar 

  82. 82

    Puster, M., Rodríguez-Manzo, J. A., Balan, A. & Drndić, M. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage. ACS Nano 7, 11283–11289 (2013).

    CAS  Google Scholar 

  83. 83

    Qi, Z. J. et al. Correlating atomic structure and transport in suspended graphene nanoribbons. Nano Lett. 14, 4238–4244 (2014).

    CAS  Google Scholar 

  84. 84

    Song, B. et al. Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11, 2247–2250 (2011).

    CAS  Google Scholar 

  85. 85

    Xu, Q. et al. Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. ACS Nano 7, 1566–1572 (2013).

    CAS  Google Scholar 

  86. 86

    Chang, P.-H., Liu, H. & Nikolić, B. K. First-principles versus semi-empirical modeling of global and local electronic transport properties of graphene nanopore-based sensors for DNA sequencing. J. Comput. Electron. 13, 847–856 (2014).

    CAS  Google Scholar 

  87. 87

    Lagerqvist, J., Zwolak, M. & Di Ventra, M. Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. Biophys. J. 93, 2384–2390 (2007).

    CAS  Google Scholar 

  88. 88

    Feliciano, G. T. et al. Capacitive DNA detection driven by electronic charge fluctuations in a graphene nanopore. Phys. Rev. Appl. 3, 034003 (2015).

    Google Scholar 

  89. 89

    Jia, X., Campos-Delgado, J., Terrones, M., Meunier, V. & Dresselhaus, M. S. Graphene edges: a review of their fabrication and characterization. Nanoscale 3, 86–95 (2011).

    CAS  Google Scholar 

  90. 90

    Qi, Z. J. et al. Electronic transport of recrystallized freestanding graphene nanoribbons. ACS Nano 9, 3510–3520 (2015).

    CAS  Google Scholar 

  91. 91

    Xie, P., Xiong, Q., Fang, Y., Qing, Q. & Lieber, C. M. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nature Nanotech. 7, 119–125 (2012).

    CAS  Google Scholar 

  92. 92

    Oliveira Brett, A. M. & Chiorcea, A.-M. Atomic force microscopy of DNA immobilized onto a highly oriented pyrolytic graphite electrode surface. Langmuir 19, 3830–3839 (2003).

    Google Scholar 

  93. 93

    Gowtham, S., Scheicher, R., Ahuja, R., Pandey, R. & Karna, S. Physisorption of nucleobases on graphene: density-functional calculations. Phys. Rev. B 76, 033401 (2007).

    Google Scholar 

  94. 94

    Akca, S., Foroughi, A., Frochtzwajg, D. & Postma, H. W. C. Competing interactions in DNA assembly on graphene. PLoS ONE 6, e18442 (2011).

    CAS  Google Scholar 

  95. 95

    Lee, J.-H., Choi, Y.-K., Kim, H.-J., Scheicher, R. H. & Cho, J.-H. Physisorption of DNA nucleobases on h-BN and graphene: vdW-corrected DFT calculations. J. Phys. Chem. C 117, 13435–13441 (2013).

    CAS  Google Scholar 

  96. 96

    Antony, J. & Grimme, S. Structures and interaction energies of stacked graphene–nucleobase complexes. Phys. Chem. Chem. Phys. 10, 2722–2729 (2008).

    CAS  Google Scholar 

  97. 97

    Varghese, N. et al. Binding of DNA nucleobases and nucleosides with graphene. ChemPhysChem 10, 206–210 (2009).

    CAS  Google Scholar 

  98. 98

    Das, A. et al. Binding of nucleobases with single-walled carbon nanotubes: theory and experiment. Chem. Phys. Lett. 453, 266–273 (2008).

    CAS  Google Scholar 

  99. 99

    Umadevi, D. & Sastry, G. N. Quantum mechanical study of physisorption of nucleobases on carbon materials: graphene versus carbon nanotubes. J. Phys. Chem. Lett. 2, 1572–1576 (2011).

    CAS  Google Scholar 

  100. 100

    Le, D., Kara, A., Schröder, E., Hyldgaard, P. & Rahman, T. S. Physisorption of nucleobases on graphene: a comparative van der Waals study. J. Phys. Condens. Matter 24, 424210 (2012).

    Google Scholar 

  101. 101

    Min, S. K., Kim, W. Y., Cho, Y. & Kim, K. S. Fast DNA sequencing with a graphene-based nanochannel device. Nature Nanotech. 6, 162–165 (2011).

    CAS  Google Scholar 

  102. 102

    Cho, Y., Min, S. K., Kim, W. Y. & Kim, K. S. The origin of dips for the graphene-based DNA sequencing device. Phys. Chem. Chem. Phys. 13, 14293–14296 (2011).

    CAS  Google Scholar 

  103. 103

    Song, B., Cuniberti, G., Sanvito, S. & Fang, H. Nucleobase adsorbed at graphene devices: enhance bio-sensorics. Appl. Phys. Lett. 100, 063101 (2012).

    Google Scholar 

  104. 104

    Bobadilla, A. D. & Seminario, J. M. Assembly of a noncovalent DNA junction on graphene sheets and electron transport characteristics. J. Phys. Chem. C 117, 26441–26453 (2013).

    CAS  Google Scholar 

  105. 105

    Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    CAS  Google Scholar 

  106. 106

    Ahmed, T. et al. Electronic fingerprints of DNA bases on graphene. Nano Lett. 12, 927–931 (2012).

    CAS  Google Scholar 

  107. 107

    Tanaka, H. & Kawai, T. Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. Nature Nanotech. 4, 518–522 (2009).

    CAS  Google Scholar 

  108. 108

    Davies, T. J., Hyde, M. E. & Compton, R. G. Nanotrench arrays reveal insight into graphite electrochemistry. Angew. Chem. Int. Ed. 44, 5121–5126 (2005).

    CAS  Google Scholar 

  109. 109

    Bonanni, A. & Pumera, M. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5, 2356–2361 (2011).

    CAS  Google Scholar 

  110. 110

    Zainudin, N., Mohd Hairul, A. R., Yusoff, M. M., Tan, L. L. & Chong, K. F. Impedimetric graphene-based biosensor for the detection of Escherichia coli DNA. Anal. Methods 6, 7935–7941 (2014).

    CAS  Google Scholar 

  111. 111

    Heller, I. et al. Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591–595 (2008).

    CAS  Google Scholar 

  112. 112

    Heller, I. et al. Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J. Am. Chem. Soc. 132, 17149–17156 (2010).

    CAS  Google Scholar 

  113. 113

    Lin, J. et al. Gating of single-layer graphene with single-stranded deoxyribonucleic acids. Small 6, 1150–1155 (2010).

    CAS  Google Scholar 

  114. 114

    Dong, X., Shi, Y., Huang, W., Chen, P. & Li, L.-J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22, 1649–1653 (2010).

    CAS  Google Scholar 

  115. 115

    Lu, C., Yang, H., Zhu, C., Chen, X. & Chen, G. A graphene platform for sensing biomolecules. Angew. Chem. 121, 4879–4881 (2009).

    Google Scholar 

  116. 116

    He, S. et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20, 453–459 (2010).

    CAS  Google Scholar 

  117. 117

    Balapanuru, J. et al. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew. Chem. 122, 6699–6703 (2010).

    Google Scholar 

  118. 118

    Tao, Y., Lin, Y., Huang, Z., Ren, J. & Qu, X. DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: a platform for label-free and sensitive fluorescence turn-on detection of multiple nucleic acid targets. Analyst 137, 2588–2592 (2012).

    CAS  Google Scholar 

  119. 119

    Hu, Y., Li, F., Han, D. & Niu, L. Biocompatible Graphene for Bioanalytical Applications (Springer, 2014).

    Google Scholar 

  120. 120

    Vicarelli, L., Heerema, S. J., Dekker, C. & Zandbergen, H. W. Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices. ACS Nano 9, 3428–3435 (2015).

    CAS  Google Scholar 

  121. 121

    Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nature Nanotech. 10, 1070–1076 (2015).

    CAS  Google Scholar 

  122. 122

    Wei, R., Martin, T. G., Rant, U. & Dietz, H. DNA origami gatekeepers for solid-state nanopores. Angew. Chem. 124, 4948–4951 (2012).

    Google Scholar 

  123. 123

    Bell, N. A. W. et al. DNA origami nanopores. Nano Lett. 12, 512–517 (2012).

    CAS  Google Scholar 

  124. 124

    Plesa, C. et al. Ionic permeability and mechanical properties of DNA origami nanoplates on solid-state nanopores. ACS Nano 8, 35–43 (2014).

    CAS  Google Scholar 

  125. 125

    Jonsson, M. P. & Dekker, C. Plasmonic nanopore for electrical profiling of optical intensity landscapes. Nano Lett. 13, 1029–1033 (2013).

    CAS  Google Scholar 

  126. 126

    Nam, S. et al. Graphene nanopore with a self-integrated optical antenna. Nano Lett. 14, 5584–5589 (2014).

    CAS  Google Scholar 

  127. 127

    Belkin, M., Chao, S.-H., Jonsson, M. P., Dekker, C. & Aksimentiev, A. Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA. ACS Nano 9, 10598–10611 (2015).

    CAS  Google Scholar 

  128. 128

    Chen, Q. et al. 3D motion of DNA–Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett. 13, 4556–4561 (2013).

    CAS  Google Scholar 

  129. 129

    Liu, H. et al. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327, 64–67 (2010).

    CAS  Google Scholar 

  130. 130

    Siwy, Z. S. & Davenport, M. Making nanopores from nanotubes. Nature Nanotech. 5, 174–175 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Vicarelli, H. W. Zandbergen, and C. Plesa for useful discussions. We acknowledge funding received from the Netherlands Organisation for Scientific Research (NWO/OCW) as a part of the Frontiers of Nanoscience program, and from the European Union Seventh Framework Programme under grant agreement no. 604391 (Graphene Flagship).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cees Dekker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heerema, S., Dekker, C. Graphene nanodevices for DNA sequencing. Nature Nanotech 11, 127–136 (2016). https://doi.org/10.1038/nnano.2015.307

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research