Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics

Abstract

The field of nanophotonics focuses on the ability to confine light to nanoscale dimensions, typically much smaller than the wavelength of light. The goal is to develop light-based technologies that are impossible with traditional optics. Subdiffractional confinement can be achieved using either surface plasmon polaritons (SPPs) or surface phonon polaritons (SPhPs). SPPs can provide a gate-tunable, broad-bandwidth response, but suffer from high optical losses; whereas SPhPs offer a relatively low-loss, crystal-dependent optical response, but only over a narrow spectral range, with limited opportunities for active tunability. Here, motivated by the recent results from monolayer graphene and multilayer hexagonal boron nitride heterostructures, we discuss the potential of electromagnetic hybrids — materials incorporating mixtures of SPPs and SPhPs — for overcoming the limitations of the individual polaritons. Furthermore, we also propose a new type of atomic-scale hybrid the crystalline hybrid — where mixtures of two or more atomic-scale (3 nm or less) polar dielectric materials lead to the creation of a new material resulting from hybridized optic phonon behaviour of the constituents, potentially allowing direct control over the dielectric function. These atomic-scale hybrids expand the toolkit of materials for mid-infrared to terahertz nanophotonics and could enable the creation of novel actively tunable, yet low-loss optics at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of electromagnetic hybrids.
Figure 2: Dispersion relationship of electromagnetic hybrids (EMHs).
Figure 3: Experimental demonstration of graphene/hBN EMH.
Figure 4: Operational bands for EMHs.
Figure 5: Schematics of crystalline hybrids (XHs).

Similar content being viewed by others

References

  1. Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. Lett. 106, 874–881 (1957).

    CAS  Google Scholar 

  2. Ruppin, R. & Englman, R. Optical phonons of small crystals. Rep. Prog. Phys. 33, 149–196 (1970).

    Article  Google Scholar 

  3. West, P. R. et al. Searching for better plasmonic materials. Laser Photon. Rev. 4, 795–808 (2010).

    Article  CAS  Google Scholar 

  4. Naik, G. V. et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478–489 (2012).

    Article  CAS  Google Scholar 

  5. Andress, W. F. et al. Ultra-subwavelength two-dimensional plasmonic circuits. Nano Lett. 12, 2272–2277 (2012).

    Article  CAS  Google Scholar 

  6. Law, S., Adams, D. C., Taylor, A. M. & Wasserman, D. Mid-infrared designer materials. Opt. Express 20, 12155–12165 (2012).

    Article  CAS  Google Scholar 

  7. Sachet, E. et al. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nature Mater. 14, 414–420 (2015).

    Article  CAS  Google Scholar 

  8. Saxena, H., Peale, R. E. & Buchwald, W. R. Tunable two-dimensional plasmon resonances in an InGaAs/InP high electron mobility transistor. J. Appl. Phys. 105, 113101 (2009).

    Article  Google Scholar 

  9. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  CAS  Google Scholar 

  10. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  CAS  Google Scholar 

  11. Fang, Z. et al. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7, 2388–2395 (2013).

    Article  CAS  Google Scholar 

  12. Muravjov, A. V. et al. Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures. Appl. Phys. Lett. 96, 042105 (2010).

    Article  Google Scholar 

  13. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    CAS  Google Scholar 

  14. Brar, V. W. et al. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 3876–3880 (2014).

    Article  CAS  Google Scholar 

  15. Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nature Nanotech. 10, 682–686 (2015). This paper reports the first experimental demonstration of SPP–HPhP coupling using a graphene/hBN electromagnetic hybrid.

    Article  CAS  Google Scholar 

  16. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nature Mater. 14, 421–425 (2014). This paper predicts the dispersion relationship of coupled SPP–HPhP modes within a graphene/hBN electromagnetic hybrid.

    Article  Google Scholar 

  17. Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nature Nanotech. 10, 1–5 (2014).

    Google Scholar 

  18. Khurgin, J. B. & Sun, G. Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl. Phys. Lett. 99, 211106 (2011).

    Article  Google Scholar 

  19. Scharte, M. et al. Do Mie plasmons have a longer lifetime on resonance than off resonance? Appl. Phys. B 73, 305–310 (2001).

    Article  CAS  Google Scholar 

  20. Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics with surface phonon polaritons. Nanophotonics 4, 44–68 (2015). This review discusses the relationship between SPhP response and the properties of the polar crystal, and areas where SPhPs can advance the state of the art.

    Article  CAS  Google Scholar 

  21. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    Article  CAS  Google Scholar 

  22. Greffet, J.-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    Article  CAS  Google Scholar 

  23. Caldwell, J. D. et al. Low-loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators. Nano Lett. 13, 3690–3697 (2013).

    Article  CAS  Google Scholar 

  24. Caldwell, J. D. et al. Sub-diffractional, volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nature Commun. 5, 5221 (2014).

    Article  CAS  Google Scholar 

  25. Chen, Y. et al. Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications. ACS Photon. 1, 718–724 (2014).

    Article  CAS  Google Scholar 

  26. Wang, T. et al. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 13, 5051–5055 (2013).

    Article  CAS  Google Scholar 

  27. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  CAS  Google Scholar 

  28. Hyun, B.-R. et al. Far-infrared absorption of PbSe nanorods. Nano Lett. 11, 2786–2790 (2011).

    Article  CAS  Google Scholar 

  29. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nature Commun. 6, 6963 (2015).

    Article  CAS  Google Scholar 

  30. Li, P. et al. Hyperbolic phonon–polaritons in boron nitride for near-field optical imaging. Nature Commun. 6, 7507 (2015).

    Article  CAS  Google Scholar 

  31. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nature Photon. 9, 674–678 (2015). This paper presents the experimental demonstration of the negative phase velocity within the hyperbolic upper Reststrahlen band of hBN and directly correlates the SPhP lifetime to that of the intrinsic optic phonons.

    Article  CAS  Google Scholar 

  32. Jia, Y. et al. Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures. ACS Photon. 2, 907–912 (2015).

    Article  CAS  Google Scholar 

  33. Barcelos, I. D. et al. Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy. Nanoscale 7, 11620–11625 (2015).

    Article  CAS  Google Scholar 

  34. Kumar, A. et al. Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system. Nano Lett. 15, 3172–3180 (2015).

    Article  CAS  Google Scholar 

  35. Caldwell, J. D. & Novoselov, K. S. Van der Waals heterostructures: mid-infrared nanophotonics. Nature Mater. 14, 364–366 (2015).

    Article  CAS  Google Scholar 

  36. Farmer, D. B., Rodrigo, D., Low, T. & Avouris, P. Plasmon-plasmon hybridization and bandwidth enhancement in nanostructured graphene. Nano Lett. 15, 2582–2587 (2015).

    Article  CAS  Google Scholar 

  37. Stinson, H. T. et al. Infrared nanospectroscopy and imaging of collective superfluid excitations in anisotropic superconductors. Phys. Rev. B 90, 014502 (2014).

    Article  Google Scholar 

  38. Keeling, J., Eastham, P. R., Szymanska, M. H. & Littlewood, P. B. BCS-BEC crossover in a system of microcavity polaritons. Phys. Rev. B 72, 115320 (2005).

    Article  Google Scholar 

  39. Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nature Photon. 10, 803–813 (2014).

    CAS  Google Scholar 

  40. Tiwald, T. E. et al. Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Phys. Rev. B 60, 11464–11474 (1999).

    Article  CAS  Google Scholar 

  41. Nagai, M., Ohkawa, K. & Kuwata-Gonokami, M. Mid-infrared pump-probe reflection spectroscopy of the coupled phonon-plasmon mode in GaN. Appl. Phys. Lett. 81, 484–486 (2002).

    Article  CAS  Google Scholar 

  42. Harima, H., Nakashima, S.-i. & Uemura, T. Raman scattering from anisotropic LO-phonon-plasmon-coupled mode in n-type 4H- and 6H-SiC. J. Appl. Phys. 78, 1996–2005 (1995).

    Article  CAS  Google Scholar 

  43. Spann, B. T. et al. Photoinduced tunability of the Reststrahlen band in 4H-SiC. Preprint at http://arXiv.org/abs/1511.09428 (2015).

  44. Hwang, E. H., Sensarma, R. & Das Sarma, S. Plasmon-phonon coupling in graphene. Phys. Rev. B 82, 195406 (2010). This paper predicts the anti-crossing behaviour observed within the dispersion of graphene SPPs due to the interference with surface optic phonons on the underlying polar substrate.

    Article  Google Scholar 

  45. Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    Article  CAS  Google Scholar 

  46. Koch, R. J., Seyller, T. & Schaefer, J. A. Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem. Phys. Rev. B 82, 201413(R) (2010).

    Article  Google Scholar 

  47. Cortes, C. L., Newman, W., Molesky, S. & Jacob, Z. Quantum nanophotonics using hyperbolic metamaterials. J. Opt. 14, 063001 (2012).

    Article  Google Scholar 

  48. Esslinger, M. et al. Tetradymites as natural hyperbolic materials for the near-infrared to visible. ACS Photon. 1, 1285–1289 (2014).

    Article  CAS  Google Scholar 

  49. Wang, Y. et al. Plasmon resonances of highly doped two-dimensional MoS2 . Nano Lett. 15, 883–890 (2015).

    Article  CAS  Google Scholar 

  50. Li, P. & Taubner, T. Multi-wavelength superlensing with layered phonon-resonant dielectrics. Opt. Express 20, A11787 (2012).

    Article  Google Scholar 

  51. Balandin, A. A. & Nika, D. L. Phononics in low-dimensional materials. Mater. Today 15, 266–275 (June, 2012).

    Article  CAS  Google Scholar 

  52. Paudel, T. R. & Lambrecht, W. R. L. Computational study of phonon modes in short-period AlN/GaN superlattices. Phys. Rev. B 80, 104202 (2009).

    Article  Google Scholar 

  53. Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nature Photon. 3, 658–661 (2009).

    Article  CAS  Google Scholar 

  54. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

    Article  CAS  Google Scholar 

  55. Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to D. S. Katzer, C. Ellis, A. Giles, D. Storm, V. Wheeler, J. Hite, N. Bassim and J. Robinson for helpful discussions and assistance with some of the images in the figures. Funding for all authors was provided by the Office of Naval Research and was administered by the Naval Research Laboratory Nanoscience Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Caldwell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caldwell, J., Vurgaftman, I., Tischler, J. et al. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nature Nanotech 11, 9–15 (2016). https://doi.org/10.1038/nnano.2015.305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing