Review Article | Published:

All-dielectric metamaterials

Nature Nanotechnology volume 11, pages 2336 (2016) | Download Citation

Abstract

The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005).

  2. 2.

    Introduction to Solid State Physics (Wiley, 2004).

  3. 3.

    & Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

  4. 4.

    , , & Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, 107401 (2007).

  5. 5.

    et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005).

  6. 6.

    Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

  7. 7.

    & Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Phys. Rev. B 75, 075119 (2007).

  8. 8.

    , , , & Three-dimensional chiral plasmonic oligomers. Nano Lett. 12, 2542–2547 (2012).

  9. 9.

    et al. Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009).

  10. 10.

    , , , & Topological transitions in metamaterials. Science 336, 205–209 (2012).

  11. 11.

    & Optical Metamaterials: Fundamentals and Applications (Springer Science and Business Media, 2009).

  12. 12.

    & From metamaterials to metadevices. Nature Mater. 11, 917–924 (2012).

  13. 13.

    , , & Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2011).

  14. 14.

    The electrical constants of a material loaded with spherical particles. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 94, 65–68 (1947).

  15. 15.

    et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749–3755 (2012).

  16. 16.

    , , , & Magnetic light. Sci. Rep. 2, 492 (2012).

  17. 17.

    et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).

  18. 18.

    , , , & Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Mater. 10, 582–586 (2011). This paper proposes an all-dielectric zero-index medium without using plasmonic components.

  19. 19.

    et al. Realization of an all-dielectric zero-index optical metamaterial. Nature Photon. 7, 791–795 (2013). This paper reports the first experimental realization of an all-dielectric zero-index metamaterial at optical frequencies.

  20. 20.

    et al. Optical magnetic mirrors without metals. Optica 1, 250–256 (2014).

  21. 21.

    & Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013).

  22. 22.

    et al. High-efficiency dielectric Huygens' surfaces. Adv. Opt. Mater. 3, 813–820 (2015). This paper demonstrates that overlapping electric and magnetic resonances of equal strength can lead to highly directional and efficient Huygens sources.

  23. 23.

    , , & Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).

  24. 24.

    , , & All-dielectric metasurface analogue of electromagnetically induced transparency. Nature Commun. 5, 5753 (2014).

  25. 25.

    et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nature Commun. 5, 3892 (2014).

  26. 26.

    , , , & Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators. Opt. Express 22, 30889–30898 (2014).

  27. 27.

    , , & Creating semiconductor metafilms with designer absorption spectra. Nature Commun. 6, 7591 (2015).

  28. 28.

    et al. Magnetic and electric hotspots with silicon nanodimers. Nano Lett. 15, 2137–2142 (2015). This paper explains the fundamental difference in hotspots created by plasmonic and all-dielectric silicon nanodimers.

  29. 29.

    & Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

  30. 30.

    , & Planar photonics with metasurfaces. Science 339, 1232009 (2013).

  31. 31.

    , , & Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). This manuscript reports wavefront and polarization manipulation of light using all-dielectric silicon based metasurfaces.

  32. 32.

    , , & Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

  33. 33.

    New type of electromagnetic wave propagating at an interface. Sov. Phys. JETP 67, 714–716 (1988).

  34. 34.

    & Dyakonov surface waves in photonic metamaterials. Phys. Rev. Lett. 94, 013901 (2005).

  35. 35.

    , & Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves. Nature Nanotech. 9, 419–424 (2014). This paper reports the observation and control of Dyakonov surface waves in nanometre-thick films sandwiched between a biaxial crystal and an isotropic liquid cladding.

  36. 36.

    & Transparent subdiffraction optics: nanoscale light confinement without metal. Optica 1, 96–100 (2014). This paper demonstrates a light confinement strategy beyond the diffraction limit by altering total internal reflection and evanescent wave skin-depth engineering.

  37. 37.

    & Photonic skin-depth engineering. J. Opt. Soc. Am. B 32, 1346–1353 (2015).

  38. 38.

    & Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

  39. 39.

    & Compact dielectric particles as a building block for low-loss magnetic metamaterials. Phys. Rev. Lett. 100, 207401 (2008).

  40. 40.

    et al. Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys. Rev. Lett. 98, 157403 (2007).

  41. 41.

    et al. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008).

  42. 42.

    , , & Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (December, 2009).

  43. 43.

    et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 95, 223902 (2005).

  44. 44.

    & Physical configuration and performance modeling of all-dielectric metamaterials. Phys. Rev. B 77, 045104 (2008).

  45. 45.

    et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

  46. 46.

    et al. Large-scale all-dielectric metamaterial perfect reflectors. ACS Photon. 2, 692–698 (2015).

  47. 47.

    , , , & Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Appl. Phys. Lett. 104, 171102 (2014).

  48. 48.

    , , , & Metamaterial mirrors in optoelectronic devices. Nature Nanotech. 9, 542–547 (2014).

  49. 49.

    et al. Optical magnetic mirrors. J. Opt. Pure Appl. Opt. 9, L1–L2 (2007).

  50. 50.

    , , , & Mirror that does not change the phase of reflected waves. Appl. Phys. Lett. 88, 091119 (2006).

  51. 51.

    , , , & High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microw. Theory 47, 2059–2074 (1999).

  52. 52.

    , , , & Directional visible light scattering by silicon nanoparticles. Nature Commun. 4, 1527 (2013). This article demonstrates directional light scattering by spherical silicon nanoparticles in the visible spectral range arising from simultaneous excitation of both electric and magnetic Mie resonances.

  53. 53.

    , , & Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nature Commun. 5, 3402 (2014).

  54. 54.

    et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).

  55. 55.

    , , & Broadband unidirectional scattering by magneto-electric core–shell nanoparticles. ACS Nano 6, 5489–5497 (2012).

  56. 56.

    et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13, 1806–1809 (2013).

  57. 57.

    , , & A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

  58. 58.

    , , , & Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004).

  59. 59.

    , , & Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: copper phthalocyanine molecules on GaP small particles. Phys. Rev. Lett. 60, 1085–1088 (1988).

  60. 60.

    et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, 1569–1574 (2005).

  61. 61.

    , & Optical coupling of deep-subwavelength semiconductor nanowires. Nano Lett. 11, 1463–1468 (2011).

  62. 62.

    et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nature Commun. 6, 7915 (2015).

  63. 63.

    et al. Nonlinear optical response from arrays of Au bowtie nanoantennas. Nano Lett. 11, 61–65 (2010).

  64. 64.

    et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

  65. 65.

    & Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

  66. 66.

    et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707–715 (2010).

  67. 67.

    et al. Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett. 12, 1660–1667 (2012).

  68. 68.

    & Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459–6463 (2012).

  69. 69.

    , & Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt. Express 21, 26721–26728 (2013).

  70. 70.

    , & Optical antennas. Adv. Opt. Photon. 1, 438–483 (2009).

  71. 71.

    & Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photon. 1, 347–353 (2014).

  72. 72.

    et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Mater. 11, 69–75 (2012).

  73. 73.

    et al. Optical manifestations of planar chirality. Phys. Rev. Lett. 90, 107404 (2003).

  74. 74.

    & Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B 71, 201101 (2005).

  75. 75.

    , , & Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013).

  76. 76.

    , , , & Flat dielectric grating reflectors with focusing abilities. Nature Photon. 4, 466–470 (2010).

  77. 77.

    et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015).

  78. 78.

    et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93, 197401 (2004).

  79. 79.

    , , & Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotech. 10, 937–943 (2015).

  80. 80.

    et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261–6266 (2015).

  81. 81.

    et al. Structural color and the lotus effect. Angew. Chem. Int. Ed. 42, 894–897 (2003).

  82. 82.

    , , & Flexible photonic metastructures for tunable coloration. Optica 2, 255–258 (2015). This article reports structural colour achieved using flexible, high-contrast grating metasurfaces.

  83. 83.

    , , , & A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings. Opt. Express 17, 1508–1517 (2009).

  84. 84.

    , & A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photon. 1, 119–122 (2007).

  85. 85.

    , , , & Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens. Energ. Convers. Manag. 51, 48–55 (2010).

  86. 86.

    , , & Engineering space-variant inhomogeneous media for polarization control. Opt. Lett. 29, 1718–1720 (2004).

  87. 87.

    , , & Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett. 27, 285–287 (2002).

  88. 88.

    , & Broadband blazing with artificial dielectrics. Opt. Lett. 29, 1593–1595 (2004).

  89. 89.

    , & Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001).

  90. 90.

    , , & Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

  91. 91.

    , & Metasurface holograms for visible light. Nature Commun. 4, 2807 (2013).

  92. 92.

    et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nature Photon. 9, 374–377 (2015).

  93. 93.

    , , & An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nature Photon. 9, 378–382 (2015).

  94. 94.

    , , & Ultra-high-efficiency metamaterial polarizer. Optica 1, 356–360 (2014).

  95. 95.

    , & Subwavelength lattice optics by evolutionary design. Nano Lett. 14, 7195–7200 (2014).

  96. 96.

    Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 046608 (2004).

  97. 97.

    , & Super-reflection and cloaking based on zero index metamaterial. Appl. Phys. Lett. 96, 101109 (2010).

  98. 98.

    & Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

  99. 99.

    & Wave–matter interactions in epsilon-and-mu-near-zero structures. Nature Commun. 5, 5638 (2014).

  100. 100.

    et al. On-chip zero-index metamaterials. Nature Photon. 9, 738–742 (2015).

  101. 101.

    , , & Realization of Dirac point with double cones in optics. Opt. Lett. 34, 1510–1512 (2009).

  102. 102.

    , , & First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals. Phys. Rev. B 86, 035141 (2012).

  103. 103.

    et al. Conical dispersion and effective zero refractive index in photonic quasicrystals. Phys. Rev. Lett. 114, 163901 (2015).

  104. 104.

    Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

  105. 105.

    et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

  106. 106.

    Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann. Phys. 328, 846–866 (1907).

  107. 107.

    Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes. Ann. Phys. 303, 233–290 (1899).

  108. 108.

    , & Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Uspekhi 10, 609–636 (1968).

  109. 109.

    Surface wave at a nonlinear interface. Opt. Lett. 5, 323–325 (1980).

  110. 110.

    & New electromagnetic mode in graphene. Phys. Rev. Lett. 99, 016803 (2007).

  111. 111.

    , , & Observation of Dyakonov surface waves. Phys. Rev. Lett. 102, 043903 (2009).

  112. 112.

    & Optical hyperspace for plasmons: Dyakonov states in metamaterials. Appl. Phys. Lett. 93, 221109 (2008).

  113. 113.

    et al. Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015).

  114. 114.

    , & Observation of the Dyakonov-Tamm wave. Phys. Rev. Lett. 111, 243902 (2013).

  115. 115.

    & Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol. A 15, 1460–1465 (1997).

  116. 116.

    & Surface electromagnetic waves: a review. Laser Photon. Rev. 5, 234–246 (2011).

  117. 117.

    & Analysis of Bloch-surface-wave assisted diffraction-based biosensors. J. Opt. Soc. Am. B 26, 279–289 (2009).

  118. 118.

    et al. Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sensor Actuat. B Chem. 174, 292–298 (2012).

  119. 119.

    , & Coherent interaction of light with a metallic structure coupled to a single quantum emitter: from superabsorption to cloaking. Phys. Rev. Lett. 110, 153605 (2013).

  120. 120.

    & Nonlinear plasmonics. Nature Photon. 6, 737–748 (2012).

  121. 121.

    City of Light: The Story of Fiber Optics (Oxford Univ. Press, 2004).

  122. 122.

    , , , & Subwavelength multilayer dielectrics: ultrasensitive transmission and breakdown of effective-medium theory. Phys. Rev. Lett. 113, 243901 (2014).

  123. 123.

    & Breakthroughs in photonics 2014: relaxed total internal reflection. IEEE Photon. J. 7, 1–5 (2015).

  124. 124.

    et al. Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems. Sol. Energ. Mater. Sol. Cells 94, 1314–1318 (2010).

  125. 125.

    et al. Quantum cascade laser. Science 264, 553–556 (1994).

  126. 126.

    et al. Terahertz range quantum well infrared photodetector. Appl. Phys. Lett. 84, 475–477 (2004).

  127. 127.

    , , , & Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

  128. 128.

    et al. Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna. Proc. Natl Acad. Sci. USA 111, 15630–15634 (2014).

  129. 129.

    et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotech. 2, 770–774 (2007).

  130. 130.

    , & Broadband moth-eye antireflection coatings on silicon. Appl. Phys. Lett. 92, 061112 (2008).

  131. 131.

    , & Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nature Commun. 3, 692 (2012).

  132. 132.

    , & Non-polarizing broadband multilayer reflectors in fish. Nature Photon. 6, 759–763 (2012).

  133. 133.

    et al. Optical broadband angular selectivity. Science 343, 1499–1501 (2014).

  134. 134.

    et al. Quantum plasmonics. Nature Phys. 9, 329–340 (2013).

  135. 135.

    Quantum plasmonics. MRS Bull. 37, 761–767 (2012).

  136. 136.

    et al. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nature Photon. 5, 166–169 (2011).

  137. 137.

    et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

  138. 138.

    , , & Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film. Opt. Express 17, 10767–10772 (2009).

  139. 139.

    , , & Quantifying the magnetic nature of light emission. Nature Commun. 3, 979 (2012).

  140. 140.

    et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

  141. 141.

    , , & All-dielectric optical nanoantennas. Opt. Express 20, 20599–20604 (2012).

  142. 142.

    et al. Experimental verification of the concept of all-dielectric nanoantennas. Appl. Phys. Lett. 100, 201113 (2012).

  143. 143.

    et al. Dielectric antennas — a suitable platform for controlling magnetic dipolar emission. Opt. Express 20, 13636–13650 (2012).

  144. 144.

    , & Optical antenna thermal emitters. Nature Photon. 3, 658–661 (2009).

  145. 145.

    , & Review of near-field thermal radiation and its application to energy conversion. Int. J. Energ. Res. 33, 1203–1232 (2009).

  146. 146.

    , & Two-dimensional tungsten photonic crystals as selective thermal emitters. Appl. Phys. Lett. 92, 193101 (2008).

  147. 147.

    , & High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt. Express 21, A96–A110 (2013).

  148. 148.

    , & Refractory plasmonics. Science 344, 263–264 (2014).

  149. 149.

    Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).

  150. 150.

    , & Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am. 67, 423–438 (1977).

Download references

Acknowledgements

The authors acknowledge funding from the Helmholtz Alberta Initiative and National Science and Engineering Research Council of Canada.

Author information

Affiliations

  1. Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada

    • Saman Jahani
    •  & Zubin Jacob
  2. Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, Indiana 47906, USA

    • Zubin Jacob

Authors

  1. Search for Saman Jahani in:

  2. Search for Zubin Jacob in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Zubin Jacob.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2015.304

Further reading