Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Reconfigurable nanomechanical photonic metamaterials

Abstract

The changing balance of forces at the nanoscale offers the opportunity to develop a new generation of spatially reconfigurable nanomembrane metamaterials in which electromagnetic Coulomb, Lorentz and Ampère forces, as well as thermal stimulation and optical signals, can be engaged to dynamically change their optical properties. Individual building blocks of such metamaterials, the metamolecules, and their arrays fabricated on elastic dielectric membranes can be reconfigured to achieve optical modulation at high frequencies, potentially reaching the gigahertz range. Mechanical and optical resonances enhance the magnitude of actuation and optical response within these nanostructures, which can be driven by electric signals of only a few volts or optical signals with power of only a few milliwatts. We envisage switchable, electro-optical, magneto-optical and nonlinear metamaterials that are compact and silicon-nanofabrication-technology compatible with functionalities surpassing those of natural media by orders of magnitude in some key design parameters.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanoscale motion and fields.
Figure 2: Implementations of spatially reconfigurable nanomembrane metamaterials.

Similar content being viewed by others

References

  1. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature Mater. 11, 917–924 (2012).

    Article  CAS  Google Scholar 

  2. Zheludev, N. I. Obtaining optical properties on demand. Science 348, 973–974 (2015).

    Article  CAS  Google Scholar 

  3. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  Google Scholar 

  4. Thijssen, R., Verhagen, E., Kippenberg, T. J. & Polman, A. Plasmon nanomechanical coupling for nanoscale transduction. Nano Lett. 13, 3293–3297 (2013).

    Article  CAS  Google Scholar 

  5. Thijssen, R., Kippenberg, T. J., Polman, A. & Verhagen, E. Parallel transduction of nanomechanical motion using plasmonic resonators. ACS Photon. 1, 1181–1188 (2014).

    Article  CAS  Google Scholar 

  6. Thijssen, R., Kippenberg, T. J., Polman, A. & Verhagen, E. Plasmomechanical resonators based on dimer nanoantennas. Nano Lett. 15, 3971–3976 (2015).

    Article  CAS  Google Scholar 

  7. Dicken, M. J. et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express 17, 18330–18339 (2009).

    Article  CAS  Google Scholar 

  8. Driscoll, T. et al. Memory metamaterials. Science 325, 1518–1521 (2009).

    Article  CAS  Google Scholar 

  9. Sámson, Z. L. et al. Metamaterial electro-optic switch of nanoscale thickness. Appl. Phys. Lett. 96, 143105 (2010).

    Article  Google Scholar 

  10. Werner, D. H., Kwon, D.-H., Khoo, I.-C., Kildishev, A. V. & Shalaev, V. M. Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices. Opt. Express 15, 3342–3347 (2007).

    Article  Google Scholar 

  11. Zhao, Q. et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl. Phys. Lett. 90, 011112 (2007).

    Article  Google Scholar 

  12. Minovich, A. et al. Liquid crystal based nonlinear fishnet metamaterials. Appl. Phys. Lett. 100, 121113 (2012).

    Article  Google Scholar 

  13. Buchnev, O., Ou, J. Y., Kaczmarek, M., Zheludev, N. I. & Fedotov, V. A. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Opt. Express 21, 1633–1638 (2013).

    Article  CAS  Google Scholar 

  14. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012).

    Article  Google Scholar 

  15. Fang, X. et al. Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl. Phys. Lett. 104, 141102 (2014).

    Article  Google Scholar 

  16. Mousavi, S. A., Plum, E., Shi, J. & Zheludev, N. I. Coherent control of birefringence and optical activity. Appl. Phys. Lett. 105, 011906 (2014).

    Article  Google Scholar 

  17. Shi, J. et al. Coherent control of Snell's law at metasurfaces. Opt. Express 22, 21051–21060 (2014).

    Article  Google Scholar 

  18. Fang, X., MacDonald, K. F. & Zheludev, N. I. Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light Sci. Appl. 4, e292 (2015).

    Article  Google Scholar 

  19. Roger, T. et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nature Commun. 6, 7031 (2015).

    Article  Google Scholar 

  20. Lapine, M. et al. Structural tunability in metamaterials. Appl. Phys. Lett. 95, 084105 (2009). This paper reports the first mechanically reconfigurable microwave metamaterial.

    Article  Google Scholar 

  21. Tao, H. et al. Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009). This paper reports the first mechanically reconfigurable terahertz metamaterial.

    Article  Google Scholar 

  22. Pryce, I. M., Aydin, K., Kelaita, Y. A., Briggs, R. M. & Atwater, H. A. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett. 10, 4222–4227 (2010). This paper reports the first mechanically reconfigurable optical metamaterial.

    Article  CAS  Google Scholar 

  23. Aksu, S. et al. Flexible plasmonics on unconventional and nonplanar substrates. Adv. Mater. 23, 4422–4430 (2011).

    Article  CAS  Google Scholar 

  24. Cui, Y., Zhou, J., Tamma, V. A. & Park, P. Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure. ACS Nano 6, 2385–2393 (2012).

    Article  CAS  Google Scholar 

  25. Lee, S. et al. Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts. Adv. Mater. 24, 3491–3497 (2012).

    Article  CAS  Google Scholar 

  26. Walia, S. et al. Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales. Appl. Phys. Rev. 2, 011303 (2015).

    Article  Google Scholar 

  27. Chicherin, D. et al. MEMS-based high-impedance surfaces for millimeter and submillimeter wave applications. Microw. Opt. Technol. Lett. 48, 2570–2573 (2006).

    Article  Google Scholar 

  28. Hand, T. Characterization of tunable metamaterial elements using MEMS switches. IEEE Antenn. Wireless Propag. Lett. 6, 401–404 (2007).

    Article  Google Scholar 

  29. Fu, Y. H. et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators. Adv. Funct. Mater. 21, 3589–3594 (2011).

    Article  CAS  Google Scholar 

  30. He, X., Lv, Z., Liu, B. & Li, Z. Tunable magnetic metamaterial based multi-split-ring resonator (MSRR) using MEMS switch components. Microsys. Technol. 17, 1263–1269 (2011).

    Article  Google Scholar 

  31. Zhu, W. M. et al. Switchable magnetic metamaterials using micromachining processes. Adv. Mater. 23, 1792–1796 (2011).

    Article  CAS  Google Scholar 

  32. Zhang, W. et al. Micromachined switchable metamaterial with dual resonance. Appl. Phys. Lett. 101, 151902 (2012).

    Article  Google Scholar 

  33. Zhu, W. M. et al. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nature Commun. 3, 1274 (2012).

    Article  CAS  Google Scholar 

  34. Ho, C. P. et al. Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics. Appl. Phys. Lett. 104, 161104 (2014).

    Article  Google Scholar 

  35. Lin, Y.-S. & Lee, C. Tuning characteristics of mirrorlike T-shape terahertz metamaterial using out-of-plane actuated cantilevers. Appl. Phys. Lett. 104, 251914 (2014).

    Article  Google Scholar 

  36. Pitchappa, P. et al. Micro-electro-mechanically switchable near infrared complementary metamaterial absorber. Appl. Phys. Lett. 104, 201114 (2014).

    Article  Google Scholar 

  37. Liu, A. Q., Zhu, W. M., Tsai, D. P. & Zheludev, N. I. Micromachined tunable metamaterials: a review. J. Opt. 14, 114009 (2012).

    Article  Google Scholar 

  38. Kasirga, T. S., Ertas, Y. N. & Bayindir, M. Microfluidics for reconfigurable electromagnetic metamaterials. Appl. Phys. Lett. 95, 214102 (2009).

    Article  Google Scholar 

  39. Zhu, W. M. et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv. Mater. 27, 4739–4743 (2015). This paper presents the first randomly addressable reconfigurable microwave metamaterial.

    Article  CAS  Google Scholar 

  40. Ozbey, B. & Aktas, O. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. Opt. Express 19, 5741–5752 (2011).

    Article  CAS  Google Scholar 

  41. Lapine, M., Shadrivov, I. V., Powell, D. A. & Kivshar, Y. S. Magnetoelastic metamaterials. Nature Mater. 11, 30–33 (2012). This paper reports the first microwave metamaterial that is actuated by electromagnetic forces.

    Article  CAS  Google Scholar 

  42. Chen, H. T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    Article  CAS  Google Scholar 

  43. Padilla, W. J., Taylor, A. J., Highstrete, C., Lee, M. & Averitt, R. D. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96, 107401 (2006).

    Article  CAS  Google Scholar 

  44. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article  CAS  Google Scholar 

  45. Lee, S. H. et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Mater. 11, 936–941 (2012).

    Article  CAS  Google Scholar 

  46. Ricci, M., Orloff, N. & Anlage, S. M. Superconducting metamaterials. Appl. Phys. Lett. 87, 034102 (2005).

    Article  Google Scholar 

  47. Savinov, V., Fedotov, V. A., Anlage, S. M., de Groot, P. A. J. & Zheludev, N. I. Modulating sub-THz radiation with current in superconducting metamaterial. Phys. Rev. Lett. 109, 243904 (2012).

    Article  CAS  Google Scholar 

  48. Boardman, A. D. et al. Active and tunable metamaterials. Laser Photon. Rev. 5, 287–307 (2011).

    Article  CAS  Google Scholar 

  49. Keiser, G. R., Fan, K., Zhang, X. & Averitt, R. D. Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: a review. J. Infrared Millim. Terahertz Waves 34, 709–723 (2013).

    Article  CAS  Google Scholar 

  50. Lapine, M., Shadrivov, I. V. & Kivshar, Y. S. Colloquium: nonlinear metamaterials. Rev. Mod. Phys. 86, 1093–1123 (2014).

    Article  CAS  Google Scholar 

  51. Shadrivov, I., Lapine, M. & Kivshar, Y. S. (eds) Nonlinear, Tunable and Active Metamaterials (Springer, 2014).

    Google Scholar 

  52. Turpin, J. P., Bossard, J. A., Morgan, K. L., Werner, D. H. & Werner, P. L. Reconfigurable and tunable metamaterials: a review of the theory and applications. Int. J. Antenn. Propag. 2014, 1–18 (2014).

    Article  Google Scholar 

  53. Fan, K. & Padilla, W. J. Dynamic electromagnetic metamaterials. Mater. Today 18, 39–50 (January–February, 2015).

    Article  CAS  Google Scholar 

  54. Toivola, Y., Thurn, J., Cook, R. F., Cibuzar, G. & Roberts, K. Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films. J. Appl. Phys. 94, 6915–6922 (2003).

    Article  CAS  Google Scholar 

  55. Zwickl, B. M. et al. High quality mechanical and optical properties of commercial silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).

    Article  Google Scholar 

  56. Petersen, K. E. Silicon as a mechanical material. Proc. IEEE 70, 420–457 (1982).

    Article  CAS  Google Scholar 

  57. Fairchild, B. A. et al. Fabrication of ultrathin single-crystal diamond membranes. Adv. Mater. 20, 4793–4798 (2008).

    Article  CAS  Google Scholar 

  58. Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011).

    Article  CAS  Google Scholar 

  59. Lagally, M. G. et al. Semiconductor nanomembranes: a platform for new science and technology. Proc. SPIE 8031, 803107 (2011).

    Article  Google Scholar 

  60. Ou, J. Y., Plum, E., Jiang, L. & Zheludev, N. I. Reconfigurable photonic metamaterials. Nano Lett. 11, 2142–2144 (2011). This paper reports the first thermally actuated optical nanomembrane metamaterial.

    Article  CAS  Google Scholar 

  61. Ou, J. Y., Plum, E., Zhang, J. & Zheludev, N. I. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature Nanotech. 8, 252–255 (2013). This paper reports the first electrostatically actuated optical nanomembrane metamaterial.

    Article  CAS  Google Scholar 

  62. Valente, J., Ou, J. Y., Plum, E., Youngs, I. J. & Zheludev, N. I. Reconfiguring photonic metamaterials with currents and magnetic fields. Appl. Phys. Lett. 106, 111905 (2015).

    Article  Google Scholar 

  63. Valente, J., Ou, J. Y., Plum, E., Youngs, I. J. & Zheludev, N. I. A magneto-electro-optical effect in a plasmonic nanowire material. Nature Commun. 6, 7021 (2015). This paper reports the first magnetically actuated optical nanomembrane metamaterial.

    Article  CAS  Google Scholar 

  64. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Nonlinear dielectric optomechanical metamaterials. Light Sci. Appl. 2, e96 (2013). This theoretical paper predicts giant nonlinear optical effects in nanomembrane metamaterials actuated by optical forces.

    Article  Google Scholar 

  65. Ou, J. Y., Plum, E., Zhang, J. & Zheludev, N. I. Giant nonlinearity of an optically reconfigurable plasmonic metamaterial. Adv. Mater. http://dx.doi.org/10.1002/adma.201504467 (2015). This paper reports the first optically actuated nano-optomechanical metamaterial operating in the optical part of the spectrum.

  66. Chen, C. C. et al. Fabrication of three dimensional split ring resonators by stress-driven assembly method. Opt. Express 20, 9415–9420 (2012).

    Article  Google Scholar 

  67. Yamaguchi, K., Fujii, M., Okamoto, T. & Haraguchi, M. Electrically driven plasmon chip: active plasmon filter. Appl. Phys. Express 7, 012201 (2014).

    Article  Google Scholar 

  68. Zhao, R., Tassin, P., Koschny, T. & Soukoulis, C. M. Optical forces in nanowire pairs and metamaterials. Opt. Express 18, 25665–25676 (2010).

    Article  CAS  Google Scholar 

  69. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Optical gecko toe: optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces. Phys. Rev. B 85, 205123 (2012).

    Article  Google Scholar 

  70. Slobozhanyuk, A. P. et al. Flexible helices for nonlinear metamaterials. Adv. Mater. 25, 3409–3412 (2013).

    Article  CAS  Google Scholar 

  71. Ginis, V., Tassin, P., Soukoulis, C. M. & Veretennicoff, I. Enhancing optical gradient forces with metamaterials. Phys. Rev. Lett. 110, 057401 (2013).

    Article  Google Scholar 

  72. Karvounis, A., Ou, J. Y., Wu, W., MacDonald, K. F. & Zheludev, N. I. Nano-optomechanical nonlinear dielectric metamaterials. Appl. Phys. Lett. 107, 191110 (2015). This paper reports the first dielectric nano-optomechanical metamaterial.

    Article  Google Scholar 

  73. Boyd, R. W. Nonlinear Optics 3rd edn (Academic Press, 2008).

    Google Scholar 

  74. Semouchkina, E. A., Semouchkin, G. B., Lanagan, M. & Randall, C. A. FDTD study of resonance processes in metamaterials. IEEE Trans. Microw. Theory Tech. 53, 1477–1487 (2005).

    Article  Google Scholar 

  75. Ginn, J. C. et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

    Article  Google Scholar 

  76. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt. Express 21, 26721–26728 (2013).

    Article  Google Scholar 

  77. Chong, K. E. et al. Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10, 1985–1990 (2014).

    Article  CAS  Google Scholar 

  78. Wang, Q. et al. 1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage. Appl. Phys. Lett. 104, 121105 (2014).

    Article  Google Scholar 

  79. Wang, Q. et al. Optically switchable and rewritable phase-change (dielectric) metamaterials. In 2015 MRS Spring Meeting, San Francisco (2015); http://eprints.soton.ac.uk/379172

  80. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Giant optical forces in planar dielectric photonic metamaterials. Opt. Lett. 39, 4883–4886 (2014).

    Article  Google Scholar 

  81. Cencillo-Abad, P., Ou, J. Y., Valente, J., Plum, E. & Zheludev, N. I. Randomly addressable reconfigurable photonic metamaterials. In 5th Int. Topical Meeting on Nanophotonics and Metamaterials, Seefeld (2015); http://eprints.soton.ac.uk/375824This conference paper presents the first randomly addressable reconfigurable nanomembrane metamaterial.

    Google Scholar 

  82. Rigden, J. S. Macmillan Encyclopedia of Physics (Simon and Schuster Macmillan, 1996).

    Google Scholar 

  83. Karim, S., Maaz, K., Ali, G. & Ensinger, W. Diameter dependent failure current density of gold nanowires. J. Phys. D 42, 185403 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Karvounis and V. Savinov for their help preparing the manuscript. We are also grateful to P. Cencillo-Abad, J. P. Valente and J. Y. Ou for preparing the Supplementary Movies and K. F. MacDonald for discussions. This work is supported by the Leverhulme Trust, the MOE Singapore (grant MOE2011-T3-1-005) and the UK's Engineering and Physical Sciences Research Council (grants EP/G060363/1 and EP/M009122/1).

Author information

Authors and Affiliations

Authors

Contributions

N.I.Z. and E.P. made equal contributions to the preparation of this Perspective.

Corresponding authors

Correspondence to Nikolay I. Zheludev or Eric Plum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Movie 1

Focused ion beam fabrication of an array of metamaterial samples (MOV 13722 kb)

Supplementary Movie 2

Actuating nanomembrane chevron metamaterial (MOV 12684 kb)

Supplementary Movie 3

Switching nanomembrane electro-optical metamaterial with the Coulomb force (MOV 10972 kb)

Supplementary Movie 4

Actuating individual wires in randomly reconfigurable nanomembrane metamaterial (MOV 11944 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheludev, N., Plum, E. Reconfigurable nanomechanical photonic metamaterials. Nature Nanotech 11, 16–22 (2016). https://doi.org/10.1038/nnano.2015.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing