Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metasurface holograms reaching 80% efficiency

This article has been updated

Abstract

Surfaces covered by ultrathin plasmonic structures—so-called metasurfaces1,2,3,4—have recently been shown to be capable of completely controlling the phase of light, representing a new paradigm for the design of innovative optical elements such as ultrathin flat lenses5,6,7, directional couplers for surface plasmon polaritons4,8,9,10 and wave plate vortex beam generation1,11. Among the various types of metasurfaces, geometric metasurfaces, which consist of an array of plasmonic nanorods with spatially varying orientations, have shown superior phase control due to the geometric nature of their phase profile12,13. Metasurfaces have recently been used to make computer-generated holograms14,15,16,17,18,19, but the hologram efficiency remained too low at visible wavelengths for practical purposes. Here, we report the design and realization of a geometric metasurface hologram reaching diffraction efficiencies of 80% at 825 nm and a broad bandwidth between 630 nm and 1,050 nm. The 16-level-phase computer-generated hologram demonstrated here combines the advantages of a geometric metasurface for the superior control of the phase profile and of reflectarrays for achieving high polarization conversion efficiency. Specifically, the design of the hologram integrates a ground metal plane with a geometric metasurface that enhances the conversion efficiency between the two circular polarization states, leading to high diffraction efficiency without complicating the fabrication process. Because of these advantages, our strategy could be viable for various practical holographic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the unit-cell structure and its polarization conversion efficiency by numerical simulations.
Figure 2: Working principle and phase distribution of the periodic hologram.
Figure 3: Experimental results for holographic image generation.

Similar content being viewed by others

Change history

  • 27 February 2015

    In the version of this Letter originally published online, in the author contribution section the initials 'M.G.' should have read 'M.K.' This error has now been corrected in all versions of the Letter.

References

  1. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  CAS  Google Scholar 

  2. Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nano antennas. Science 335, 427 (2012).

    Article  CAS  Google Scholar 

  3. Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Mater. 11, 426–431 (2012).

    Article  CAS  Google Scholar 

  4. Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

    Article  CAS  Google Scholar 

  5. Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).

    Article  CAS  Google Scholar 

  6. Chen, X. et al. Dual-polarity plasmonic metalens for visible light. Nature Commun. 3, 1198 (2012).

    Article  Google Scholar 

  7. Ni, X., Ishii, S., Kildishev, A. V. & Shalaev, V. M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl. 2, e72 (2013).

    Article  Google Scholar 

  8. Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).

    Article  CAS  Google Scholar 

  9. Huang, L. et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl. 2, e70 (2013).

    Article  Google Scholar 

  10. Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).

    Article  CAS  Google Scholar 

  11. Li, G. et al. Spin enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett. 11, 4148 (2013).

    Article  Google Scholar 

  12. Dahan, N., Gorodetski, Y., Frischwasser, K., Kleiner, V. & Hasman, E. Geometric Doppler effect: spin-split dispersion of thermal radiation. Phys. Rev. Lett. 105, 136402 (2010).

    Article  Google Scholar 

  13. Huang, L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750–5755 (2012).

    Article  CAS  Google Scholar 

  14. Larouche, S., Tsai, Y. J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared metamaterial phase holograms. Nature Mater. 11, 450–454 (2012).

    Article  CAS  Google Scholar 

  15. Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14, 225–230 (2013).

    Article  Google Scholar 

  16. Yifat, Y. et al. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays. Nano Lett. 14, 2485–2490 (2014).

    Article  CAS  Google Scholar 

  17. Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nature Commun. 4, 2807 (2013).

    Article  Google Scholar 

  18. Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nature Commun. 4, 2808 (2013).

    Article  Google Scholar 

  19. Lin, J., Genevet, P., Kats, M. A., Antoniou, N. & Capasso, F. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett. 13, 4269–4274 (2013).

    Article  CAS  Google Scholar 

  20. Freese, W., Kämpfe, T., Kley, E. B. & Tünnermann, A. Design of binary subwavelength multiphase level computer generated holograms. Opt. Lett. 35, 676–678 (2010).

    Article  Google Scholar 

  21. Gori, F. Measuring Stokes parameters by means of a polarization grating. Opt. Lett. 24, 584 (1999).

    Article  CAS  Google Scholar 

  22. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141 (2002).

    Article  Google Scholar 

  23. Hao, J. et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99, 063908 (2007).

    Article  Google Scholar 

  24. Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Broadband plasmonic half-wave plates in reflection. Opt. Lett. 38, 513–515 (2013).

    Article  Google Scholar 

  25. Grady, N. K. et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304 (2013).

    Article  CAS  Google Scholar 

  26. Jiang, S. C. et al. Controlling the polarization state of light with a dispersion-free metastructure. Phys. Rev. X 4, 021026 (2014).

    Google Scholar 

  27. Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237 (1972).

    Google Scholar 

  28. Hasman, E., Davidson, N. & Friesem, A. A. Efficient multilevel phase holograms for CO2 lasers. Opt. Lett. 16, 423 (1991).

    Article  CAS  Google Scholar 

  29. Shen, F. & Wang, A. Fast-Fourier-transform based numerical integration method for the Rayleigh–Sommerfeld diffraction formula. Appl. Opt. 45, 1102–1110 (2006).

    Article  Google Scholar 

  30. Dammann, H. & Görtler, K. High-efficiency in-line multiple imaging by means of multiple phase holograms. Opt. Commun. 3, 312–315 (1971).

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Engineering and Physical Sciences Research Council (EP/J018473/1). The authors thank L. Zhu and W. He for discussions. H.M. and T.Z. acknowledge financial support from the Deutsche Forschungsgemeinschaft Research Training Group GRK1464. S.Z. and T.Z. acknowledge support from the European Commission under the Marie Curie Career Integration Program. S.Z. acknowledges financial support from the National Natural Science Foundation of China (grant no. 61328503).

Author information

Authors and Affiliations

Authors

Contributions

G.Z., T.Z., G.L. and S.Z. conceived and designed the experiments. M.K. and G.Z. carried out the design and simulation of the metasurfaces. H.M. fabricated the samples. G.Z. and G.L. performed the measurements. G.Z., G.L., T.Z. and S.Z. analysed the data. G.Z., S.Z. and T.Z. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Guixin Li, Thomas Zentgraf or Shuang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, G., Mühlenbernd, H., Kenney, M. et al. Metasurface holograms reaching 80% efficiency. Nature Nanotech 10, 308–312 (2015). https://doi.org/10.1038/nnano.2015.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing