Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme

Abstract

It has been proposed that high-frequency detectors based on the so-called spin-torque diode effect in spin transfer oscillators could eventually replace conventional Schottky diodes due to their nanoscale size, frequency tunability and large output sensitivity. Although a promising candidate for information and communications technology applications, the output voltage generated from this effect has still to be improved and, more pertinently, reduces drastically with decreasing radiofrequency (RF) current. Here we present a scheme for a new type of spintronics-based high-frequency detector based on the expulsion of the vortex core in a magnetic tunnel junction (MTJ). The resonant expulsion of the core leads to a large and sharp change in resistance associated with the difference in magnetoresistance between the vortex ground state and the final C-state configuration. Interestingly, this reversible effect is independent of the incoming RF current amplitude, offering a fast real-time RF threshold detector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vortex core resonance versus core expulsion.
Figure 2: Core expulsion to quasi-uniform state.
Figure 3: Reducing IRFmin by compensation of damping.
Figure 4: Radio frequency current dependence.

Similar content being viewed by others

References

  1. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  CAS  Google Scholar 

  2. Chanthbouala, A. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nature Phys. 7, 626–630 (2011).

    Article  CAS  Google Scholar 

  3. Pribiag, V. S. et al. Magnetic vortex oscillator driven by d.c. spin-polarized current. Nature Phys. 3, 498–503 (2007).

    Article  CAS  Google Scholar 

  4. Dussaux, A. et al. Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. Nature Commun. 1, 8 (2010).

    Article  CAS  Google Scholar 

  5. Dussaux, A. et al. Field dependence of spin-transfer-induced vortex dynamics in the nonlinear regime. Phys. Rev. B 86, 014402 (2012).

    Article  Google Scholar 

  6. Grimaldi, E. et al. Response to noise of a vortex based spin transfer nano-oscillator. Phys. Rev. B 89, 104404 (2014).

    Article  Google Scholar 

  7. Tsunegi, S. et al. High emission power and Q factor in spin torque vortex oscillator consisting of FeB free layer. Appl. Phys. Express 7, 063009 (2014).

    Article  Google Scholar 

  8. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotech. 8, 839–844 (2013).

    Article  CAS  Google Scholar 

  9. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  10. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  11. Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    Article  CAS  Google Scholar 

  12. Miwa, S. et al. Highly sensitive nanoscale spin-torque diode. Nature Mater. 13, 50–56 (2014).

    Article  CAS  Google Scholar 

  13. Zhu, J. et al. Highly sensitive nanoscale spin-torque diode. Phys. Rev. Lett. 19, 197203 (2012).

    Article  Google Scholar 

  14. Naganuma, H. et al. Electrical detection of millimeter-waves by magnetic tunnel junctions using perpendicular magnetized l10-fepd free layer. Nano Lett. 15, 623–628 (2015).

    Article  CAS  Google Scholar 

  15. Fang, B. et al. Giant spin-torque diode sensitivity at low input power in the absence of bias magnetic field. Preprint at http://arxiv.org/abs/1410.4958 (2014).

  16. Guslienko, K. Y. et al. Eigenfrequencies of vortex state excitations in magnetic submicron-size disks. J. Appl. Phys. 91, 8037 (2002).

    Article  CAS  Google Scholar 

  17. de Loubens, G. et al. Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk. Phys. Rev. Lett. 102, 177602 (2009).

    Article  CAS  Google Scholar 

  18. Uhlir, V. et al. Dynamic switching of the spin circulation in tapered magnetic nanodisks. Nature Nanotech. 8, 341–346 (2013).

    Article  CAS  Google Scholar 

  19. Vogel, A., Drews, A., Kamionka, T., Bolte, M. & Meier, G. Influence of dipolar interaction on vortex dynamics in arrays of ferromagnetic disks. Phys. Rev. Lett. 105, 037201 (2010).

    Article  Google Scholar 

  20. Jenkins, A. S. et al. Controlling the chirality and polarity of vortices in magnetic tunnel junctions. Appl. Phys. Lett. 105, 172403 (2014).

    Article  Google Scholar 

  21. Pigeau, B. et al. A frequency-controlled magnetic vortex memory. Appl. Phys. Lett. 96, 132506 (2010).

    Article  Google Scholar 

  22. Shibata, J., Shigeto, K. & Otani, Y. Dynamics of magnetostatically coupled vortices in magnetic nanodisks. Phys. Rev. B 67, 224404 (2003).

    Article  Google Scholar 

  23. Hanze, M., Adolff, C. F., Weigand, M. & Meier, G. Tunable eigenmodes of coupled magnetic vortex oscillators. Appl. Phys. Lett. 104, 182405 (2014).

    Article  Google Scholar 

  24. Guslienko, K. Y., Lee, K. S. & Kim, S. K. Dynamic origin of vortex core switching in soft magnetic nanodots. Phys. Rev. Lett. 100, 027203 (2008).

    Article  Google Scholar 

  25. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, 1–7 (1996).

    Article  Google Scholar 

  26. Khvalkovskiy, A. V. et al. Nonuniformity of a planar polarizer for spin-transfer-induced vortex oscillations at zero field. Appl. Phys. Lett. 96, 212507 (2010).

    Article  Google Scholar 

  27. Ivanov, B. & Zaspel, C. Excitation of spin dynamics by spin-polarized current in vortex state magnetic disks. Phys. Rev. Lett. 99, 247208 (2007).

    Article  CAS  Google Scholar 

  28. Zhang, S. Mechanisms of spin-polarized current-driven magnetization switching. Phys. Rev. Lett. 88, 1–4 (2002).

    Google Scholar 

  29. Khvalkovskiy, A., Grollier, J., Dussaux, A., Zvezdin, K. & Cros, V. Vortex oscillations induced by spin-polarized current in a magnetic nanopillar: analytical versus micromagnetic calculations. Phys. Rev. B 80, 140401 (2009).

    Article  Google Scholar 

  30. Lebrun, R. et al. Understanding of phase noise squeezing under fractional synchronization of a nonlinear spin transfer vortex oscillator. Phys. Rev. Lett. 115, 017201 (2015).

    Article  CAS  Google Scholar 

  31. Donahue, M. J. & Porter, D. G. OOMMF User's Guide Version 1.0 6376 (National Institute of Standards and Technology, 1999).

Download references

Acknowledgements

The authors acknowledge the ANR agency (SPINNOVA ANR-11-NANO-0016) as well as EU FP7 grant (MOSAIC No. ICT-FP7-8.317950) for financial support. E.G. acknowledges CNES and DGA for their support.

Author information

Authors and Affiliations

Authors

Contributions

A.S.J., P.B. and V.C. conceived and coordinated the project. A.S.J. performed the experimental measurements, as well as the micromagnetic simulations. A.S.J., R.L., E.G., P.B. and V.C. interpreted the data. S.T. assisted in the development of the experimental setup. The samples were fabricated by H.K., K.Y., A.F., and S.Y. The manuscript was prepared by A.S.J. with the assistance of P.B. and V.C. All authors commented the manuscript.

Corresponding author

Correspondence to V. Cros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkins, A., Lebrun, R., Grimaldi, E. et al. Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme. Nature Nanotech 11, 360–364 (2016). https://doi.org/10.1038/nnano.2015.295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing