Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-spin CCD

Abstract

Spin-based electronics or spintronics relies on the ability to store, transport and manipulate electron spin polarization with great precision1,2,3,4. In its ultimate limit, information is stored in the spin state of a single electron, at which point quantum information processing also becomes a possibility5,6. Here, we demonstrate the manipulation, transport and readout of individual electron spins in a linear array of three semiconductor quantum dots. First, we demonstrate single-shot readout of three spins with fidelities of 97% on average, using an approach analogous to the operation of a charge-coupled device (CCD)7. Next, we perform site-selective control of the three spins, thereby writing the content of each pixel of this ‘single-spin charge-coupled device’. Finally, we show that shuttling an electron back and forth in the array hundreds of times, covering a cumulative distance of 80 μm, has negligible influence on its spin projection. Extrapolating these results to the case of much larger arrays points at a diverse range of potential applications, from quantum information to imaging and sensing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linear array of three quantum dots and single-spin CCD operation.
Figure 2: Writing and readout of the single-spin CCD.
Figure 3: Preservation of the spin projection during shuttling.

Similar content being viewed by others

References

  1. Prinz, G. A. Spin-polarized transport. Phys. Today 48, 58–63 (1995).

    Article  CAS  Google Scholar 

  2. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  3. Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  4. Spintronics insight. Nature Mater. 11, 367–416 (2012).

  5. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

    Article  CAS  Google Scholar 

  6. Taylor, J. M. et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nature Phys. 1, 177–183 (2005).

    Article  CAS  Google Scholar 

  7. Boyle, W. S. & Smith, G. E. Charge coupled semiconductor devices. Bell Syst. Tech. J. 49, 587–593 (1970).

    Article  Google Scholar 

  8. Kikkawa, J. & Awschalom, D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    Article  CAS  Google Scholar 

  9. Crooker, S. A. et al. Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309, 2191–2195 (2005).

    Article  CAS  Google Scholar 

  10. Grabert, H. & Devoret, M. H. (eds) Single Charge Tunneling Vol. 294 (NATO ASI Series, Springer, 1992).

    Book  Google Scholar 

  11. Ono, Y., Fujiwara, A., Nishiguchi, K., Inokawa, H. & Takahashi, Y. Manipulation and detection of single electrons for future information processing. J. Appl. Phys. 97, 031101 (2005).

    Article  Google Scholar 

  12. McNeil, R. P. G. et al. On-demand single-electron transfer between distant quantum dots. Nature 477, 439–442 (2011).

    Article  CAS  Google Scholar 

  13. Hermelin, S. et al. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 477, 435–438 (2011).

    Article  CAS  Google Scholar 

  14. Howell, S. B. Handbook of CCD Astronomy (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  15. Barthelemy, P. & Vandersypen, L. M. K. Quantum dot systems: a versatile platform for quantum simulations. Ann. Phys. (Leipz.) 525, 808–826 (2013).

    Article  CAS  Google Scholar 

  16. Vrijen, R. & Yablonovitch, E. A spin-coherent semiconductor photo-detector for quantum communication. Physica E 10, 569–575 (2001).

    Article  CAS  Google Scholar 

  17. Fujita, T. et al. Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot. Phys. Rev. Lett. 110, 266803 (2013).

    Article  CAS  Google Scholar 

  18. Barthel, C. et al. Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot. Phys. Rev. B 81, 3–6 (2010).

    Article  Google Scholar 

  19. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  CAS  Google Scholar 

  20. Shafiei, M., Nowack, K., Reichl, C., Wegscheider, W. & Vandersypen, L. Resolving spin–orbit- and hyperfine-mediated electric dipole spin resonance in a quantum dot. Phys. Rev. Lett. 110, 107601 (2013).

    Article  CAS  Google Scholar 

  21. Danon, J. & Nazarov, Y. V. Pauli spin blockade in the presence of strong spin–orbit coupling. Phys. Rev. B 80, 041301 (2009).

    Article  Google Scholar 

  22. Schreiber, L. et al. Coupling artificial molecular spin states by photon-assisted tunnelling. Nature Commun. 2, 556 (2011).

    Article  CAS  Google Scholar 

  23. Golovach, V. N., Khaetskii, A. & Loss, D. Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004).

    Article  Google Scholar 

  24. Scarlino, P. et al. Spin-relaxation anisotropy in a GaAs quantum dot. Phys. Rev. Lett. 113, 256802 (2014).

    Article  CAS  Google Scholar 

  25. Hanson, R. et al. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  CAS  Google Scholar 

  26. Colless, J. I. et al. Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. Phys. Rev. Lett. 110, 046805 (2013).

    Article  CAS  Google Scholar 

  27. Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Article  CAS  Google Scholar 

  28. Nowack, K. C., Koppens, F. H., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  CAS  Google Scholar 

  29. Shulman, M. D. et al. Demonstration of entanglement of electrostatically coupled singlet–triplet qubits. Science 336, 202–205 (2012).

    Article  CAS  Google Scholar 

  30. Srinivasa, V., Nowack, K. C., Shafiei, M., Vandersypen, L. M. K. & Taylor, J. M. Simultaneous spin-charge relaxation in double quantum dots. Phys. Rev. Lett. 110, 196803 (2013).

    Article  CAS  Google Scholar 

  31. Yang, C. H. et al. Spin–valley lifetimes in a silicon quantum dot with tunable valley splitting. Nature Commun. 4, 2069 (2013).

    Article  CAS  Google Scholar 

  32. Simmons, C. B. et al. Tunable spin loading and T1 of a silicon spin qubit measured by single-shot readout. Phys. Rev. Lett. 106, 156804 (2011).

    Article  CAS  Google Scholar 

  33. Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control fidelity. Nature Nanotech. 9, 981–985 (2014).

    Article  CAS  Google Scholar 

  34. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    Article  CAS  Google Scholar 

  35. Yang, C. H. et al. Charge state hysteresis in semiconductor quantum dots. Appl. Phys. Lett. 105, 183505 (2014).

    Article  Google Scholar 

  36. Shafiei, M. Electrical Control, Read-out and Initialization of Single Electron Spins PhD thesis, Delft Univ. of Technology (2013).

  37. Long, A. R. et al. The origin of switching noise in GaAs/AlGaAs lateral gated devices. Physica E 34, 553–556 (2006).

    Article  Google Scholar 

  38. Oosterkamp, T. H. et al. Microwave spectroscopy of a quantum-dot molecule. Nature 395, 873–876 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge useful discussions with the members of the Delft spin qubit team, sample fabrication by F.R. Braakman and experimental assistance from M. Ammerlaan, A. van der Enden, J. Haanstra, R. Roeleveld, R. Schouten, M. Tiggelman and R. Vermeulen. This work is supported by the Netherlands Organization of Scientific Research (NWO) Graduate Program, the Intelligence Advanced Research Projects Activity (IARPA) Multi-Qubit Coherent Operations (MQCO) Program and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.A.B., M.S. and T.F. performed the experiment and analysed the data. C.R. and W.W. grew the heterostructure. T.A.B., M.S., T.F. and L.M.K.V. contributed to interpretation of the data and commented on the manuscript. T.A.B. and L.M.K.V. wrote the manuscript.

Corresponding author

Correspondence to L. M. K. Vandersypen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baart, T., Shafiei, M., Fujita, T. et al. Single-spin CCD. Nature Nanotech 11, 330–334 (2016). https://doi.org/10.1038/nnano.2015.291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing