Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prospects for thermoelectricity in quantum dot hybrid arrays

The electronic, chemical and mechanical properties of quantum dot structures may lead to thermoelectric devices with a range of advantages with respect to existing ones based on bulk polycrystalline materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Relevant length scales and parameters for thermoelectric materials.
Figure 2: Possibilities for enhancing thermoelectric performance by controlling energetic and transport phenomena in quantum dot hybrid array thermoelectrics.

References

  1. 1

    Chu, S. & Majumdar, A. Nature 488, 294–303 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Mancini, T. R., Gary, J. A., Kolb, G. J. & Ho, C. K. Power Tower Technology Roadmap and Cost Reduction Plan Report No. SAND2011–2419 (2011).

    Book  Google Scholar 

  3. 3

    US Energy Information Administration Annual Energy Outlook 2012 (US EIA, 2012).

  4. 4

    Tritt, T. M., Boettner, H. & Chen, L. MRS Bull. 33, 366–368 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Snyder, G. J. & Toberer, E. S. Nature Mater. 7, 105–114 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Shakouri, A. Annu. Rev. Mater. Res. 41, 399–431 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Zebarjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F. & Chen, G. Energ. Environ. Sci. 5, 5147–5162 (2012).

    Article  Google Scholar 

  8. 8

    Lyden, H. A. Phys. Rev. A 135, A514–A521 (1964).

    Article  Google Scholar 

  9. 9

    Huang, B.-L. & Kaviany, M. Phys. Rev. B 77, 125209 (2008).

    Article  Google Scholar 

  10. 10

    Mavrokefalos, A. et al. J. Appl. Phys. 105, 104318 (2009).

    Article  Google Scholar 

  11. 11

    Hicks, L. D. & Dresselhaus, M. S. Phys. Rev. B 47, 12727–12731 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Dresselhaus, M. S. et al. Adv. Mater. 19, 1043–1053 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Vineis, C. J., Shakouri, A., Majumdar, A. & Kanatzidis, M. G. Adv. Mater. 22, 3970–3980 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Ohta, H. et al. Adv. Mater. 24, 740–744 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J. & Heath, J. R. Nature Nanotech. 5, 718–721 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Tang, J. et al. Nano Lett. 10, 4279–4283 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Ravichandran, J. et al. Nature Mater. 13, 168–172 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Luckyanova, M. N. et al. Science 338, 936–939 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Feser, J. P., Chan, E. M., Majumdar, A., Segalman, R. A. & Urban, J. J. Nano Lett. 13, 2122–2127 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Nature Mater. 12, 410–415 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Losego, M. D. & Cahill, D. G. Nature Mater. 12, 382–384 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Vashaee, D. & Shakouri, A. Phys. Rev. Lett. 92, 106103 (2004).

    Article  Google Scholar 

  23. 23

    Heremans, J. P., Thrush, C. M. & Morelli, D. T. Phys. Rev. B 70, 115334 (2004).

    Article  Google Scholar 

  24. 24

    Zide, J. M. O. et al. Phys. Rev. B 74, 205335 (2006).

    Article  Google Scholar 

  25. 25

    Wang, R. Y. et al. Nano Lett. 8, 2283–2288 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Lynch, J. et al. ACS Nano 8, 10528–10536 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Ibáñez, M. et al. ACS Nano 7, 2573–2586 (2013).

    Article  Google Scholar 

  28. 28

    Kovalenko, M. V. et al. J. Am. Chem. Soc. 132, 6686–6695 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Scheele, M. et al. ACS Nano 5, 8541–8551 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Slack, A. G. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 407–440 (CRC Press, 1995).

    Google Scholar 

  31. 31

    See, K. C. et al. Nano Lett. 10, 4664–4667 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Cho, E. S. et al. Adv. Mater. 27, 5744–5752 (2015).

    CAS  Article  Google Scholar 

  33. 33

    Reddy, P., Jang, S.-Y., Segalman, R. A. & Majumdar, A. Science 315, 1568–1571 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Tao, N. J. Nature Nanotech. 1, 173–181 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Talapin, D. V. & Murray, C. B. Science 310, 86–89 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Nag, A. et al. J. Am. Chem. Soc. 134, 13604–13615 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Cadavid, D. et al. J. Mater. Chem. A 1, 4864–4870 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Voznyy, O., Thon, S. M., Ip, A. H. & Sargent, E. H. J. Phys. Chem. Lett. 4, 987–992 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Pettes, M. T., Maassen, J., Jo, I., Lundstrom, M. S. & Shi, L. Nano Lett. 13, 5316–5322 (2013).

    CAS  Article  Google Scholar 

  40. 40

    Kovalenko, M. V. et al. ACS Nano 9, 1012–1057 (2015).

    CAS  Article  Google Scholar 

  41. 41

    Zervos, H. Thermoelectric Energy Harvesting 2014–2024: Devices, Applications, Opportunities (IDTechEx, 2015); http://go.nature.com/9E5yjZ

    Google Scholar 

  42. 42

    LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C. & Goodson, K. E. Renew. Sust. Energ. Rev. 32, 313–327 (2014).

    CAS  Article  Google Scholar 

  43. 43

    Yazawa, K. & Shakouri, A. Environ. Sci. Technol. 45, 7548–7553 (2011).

    CAS  Article  Google Scholar 

  44. 44

    Coates, N. E. et al. Adv. Mater. 25, 1629–1633 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Nature 466, 474–477 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Rupich, S. M., Castro, F. C., Irvine, W. T. M. & Talapin, D. V. Nature Commun. 5, 5045 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Bell, L. E. Science 321, 1457–1461 (2008).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Urban.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urban, J. Prospects for thermoelectricity in quantum dot hybrid arrays. Nature Nanotech 10, 997–1001 (2015). https://doi.org/10.1038/nnano.2015.289

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research