Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

What future for quantum dot-based light emitters?

Synthesis of semiconductor colloidal quantum dots by low-cost, solution-based methods has produced an abundance of basic science. Can these materials be transformed to high-performance light emitters to disrupt established photonics technologies, particularly semiconductor lasers?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Optical gain spectroscopy at lowest exciton resonance in red II–VI quantum dot films.
Figure 2: Semiconductor nanoplatelets.
Figure 3: Red, green and blue surface-emitting CdSe–CdZnSe distributed feedback (DFB) colloidal quantum dot lasers.
Figure 4: Proposed energy-level scheme for a composite electrical injector interface in a perovskite LED, combining inorganic and organic thin films for electron and hole transport, respectively.

References

  1. 1

    Shimizu, H. et al. Jpn. J. Appl. Phys. 44, L1103–L1104 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Telford, M. III-Vs Rev. 17, 28–31 (2004).

    Google Scholar 

  3. 3

    Steckel, J. S., Ho, J. & Coe-Sullivan, S. Photon. Spectra http://go.nature.com/mMfCaf (September 2014).

  4. 4

    Jain, K. K. Handbook of Biomarkers (Humana Press, 2012).

  5. 5

    Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Science 287, 1011–1013 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Chan, Y., Caruge, J. M., Snee, P. T. & Bawendi, M. G. Appl. Phys. Lett. 85, 2460–2462 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Dang, C. et al. Nature Nanotech. 7, 335–339 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Klimov, V. I. et al. Nature 447, 441–446 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Dang, C. & Nurmikko, A. MRS Bull. 38, 737–742 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Ithurria, S. et al. Nature Mater. 10, 936–941 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Haase, M. A., Qiu, J., DePuydt, J. M. & Cheng, H. Appl. Phys. Lett. 59, 1272–1274 (1991).

    CAS  Article  Google Scholar 

  12. 12

    Jeon, H. et al. Appl. Phys. Lett. 59, 3619–3621 (1991).

    CAS  Article  Google Scholar 

  13. 13

    Chunxing, S. et al. Nano Lett. 14, 2772–2777 (2014).

    Article  Google Scholar 

  14. 14

    Guzelturk, B., Kelestemur, Y., Olutas, M., Delikanli, S. & Demir, H. V. ACS Nano 8, 6599–6605 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Grim, J. Q. et al. Nature Nanotech. 9, 891–895 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Xing, G. et al. Nature Mater. 13, 476–480 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Deschler, F. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Yakunin, S. Nature Commun. 6, 8056 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Zhu, H. et al. Nature Mater. 14, 636–642 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Nano Lett. 14, 5995–6001 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Dhanker, R. et al. Appl. Phys. Lett. 105, 151112 (2014).

    Article  Google Scholar 

  22. 22

    Sundar, V. C. et al. Adv. Mater. 16, 2137–2141 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Chen, Y. J. et al. Appl. Phys. Lett. 99, 241103 (2011).

    Article  Google Scholar 

  24. 24

    Kwangdong, R. et al. Opt. Express 22, 18800–18806 (2014).

    Article  Google Scholar 

  25. 25

    Todescato, F. et al. Adv. Funct. Mater. 22, 337–344 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Chen, S. et al. CLEO: 2015 OSA Tech. Digest SM2F.6 (2015).

  27. 27

    Sutherland, B. R., Hoogland, S., Adachi, M. M., Wong, C. T. & Sargent, E. H. ACS Nano 8, 10947–10952 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Mashford, B. S. et al. Nature Photon. 7, 407–412 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Dai, X. et al. Nature 515, 96–99 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Yang, X. et al. ACS Nano 8, 8224–8231 (2014).

    CAS  Article  Google Scholar 

  31. 31

    Tan, Z.-K. et al. Nature Nanotech. 9, 687–692 (2014).

    CAS  Article  Google Scholar 

  32. 32

    Song, J. et al. Adv. Mater. 27, 7162–7167 (2015).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arto Nurmikko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nurmikko, A. What future for quantum dot-based light emitters?. Nature Nanotech 10, 1001–1004 (2015). https://doi.org/10.1038/nnano.2015.288

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research