Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasmonic colour laser printing

Abstract

Colour generation by plasmonic nanostructures1,2 and metasurfaces3,4 has several advantages over dye technology: reduced pixel area, sub-wavelength resolution and the production of bright and non-fading colours5. However, plasmonic colour patterns need to be pre-designed and printed either by e-beam lithography (EBL)6,7,8,9,10,11 or focused ion beam (FIB)12,13,14, both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures15. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different colour appearances can be created. Using this technique we can print all primary colours with a speed of 1 ns per pixel, resolution up to 127,000 dots per inch (DPI) and power consumption down to 0.3 nJ per pixel.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Plasmonic structures for colour printing.
Figure 2: Spectral and geometry analyses and numerical simulations.
Figure 3: Flexible and robust samples for colour printing and colour mixing.
Figure 4: Laser printing with sub-diffraction-limit resolution.

References

  1. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  CAS  Google Scholar 

  2. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  3. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  CAS  Google Scholar 

  4. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  CAS  Google Scholar 

  5. Dean, N. Colouring at the nanoscale. Nature Nanotechnol. 10, 15–16 (2015).

    Article  CAS  Google Scholar 

  6. Kumar, K. et al. Printing colour at the optical diffraction limit. Nature Nanotechnol. 7, 557–561 (2012).

    Article  CAS  Google Scholar 

  7. Wu, Y.-K., Hollowell, A. E., Zhang, C. & Guo, L. J. Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci. Rep. 3, 1194 (2013).

    Article  Google Scholar 

  8. Roberts, A. S., Pors, A., Albrektsen, O. & Bozhevolnyi, S. I. Subwavelength plasmonic color printing protected for ambient use. Nano Lett. 14, 783–787 (2014).

    Article  CAS  Google Scholar 

  9. Tan, S. J. et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014).

    Article  CAS  Google Scholar 

  10. Goh, X. M. et al. Three-dimensional plasmonic stereoscopic prints in full colour. Nature Commun. 5, 5361 (2014).

    Article  CAS  Google Scholar 

  11. Ellenbogen, T., Seo, K. & Crozier, K. B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. 12, 1026–1031 (2012).

    Article  CAS  Google Scholar 

  12. Zeng, B., Gao, Y. & Bartoli, F. J. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Sci. Rep. 3, 2840 (2013).

    Article  Google Scholar 

  13. Cheng, F., Gao, J., Luk, T. S. & Yang, X. Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci. Rep. 5, 11045 (2015).

    Article  CAS  Google Scholar 

  14. Yokogawa, S., Burgos, S. P. & Atwater, H. A. Plasmonic color filters for cmos image sensor applications. Nano Lett. 12, 4349–4354 (2012).

    Article  CAS  Google Scholar 

  15. Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. & Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996).

    Article  Google Scholar 

  16. Knight, M. W. et al. Aluminum plasmonic nanoantennas. Nano Lett. 12, 6000–6004 (2012).

    Article  CAS  Google Scholar 

  17. Olson, J. et al. Vivid, full-color aluminum plasmonic pixels. Proc. Natl Acad. Sci. USA 111, 14348–14353 (2014).

    Article  CAS  Google Scholar 

  18. Prodan, E., Radloff, C., Halas, N. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    Article  CAS  Google Scholar 

  19. Clausen, J. S. et al. Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett. 14, 4499–4504 (2014).

    Article  CAS  Google Scholar 

  20. Wang, Y. M. et al. High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting. Sci. Rep. 5, 9654 (2015).

    Article  Google Scholar 

  21. Chen, X., Chen, Y., Yan, M. & Qiu, M. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6, 2550–2557 (2012).

    Article  CAS  Google Scholar 

  22. Zywietz, U., Evlyukhin, A. B., Reinhardt, C. & Chichkov, B. N. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nature Commun. 5, 3402 (2014).

    Article  Google Scholar 

  23. Baffou, G., Quidant, R. & Garca de Abajo, F. J. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010).

    Article  CAS  Google Scholar 

  24. Zijlstra, P., Chon, J. W. M. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009).

    Article  CAS  Google Scholar 

  25. Kim, H. et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nature Photon. 3, 534–540 (2009).

    Article  CAS  Google Scholar 

  26. Ulichney, R. Digital Halftoning (MIT Press, 1987).

    Book  Google Scholar 

  27. Kawata, S., Sun, H., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    Article  CAS  Google Scholar 

  28. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  29. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  CAS  Google Scholar 

  30. Højlund-Nielsen, E., Greibe, T., Mortensen, N. A. & Kristensen, A. Single-spot e-beam lithography for defining large arrays of nano-holes. Microelectron. Eng. 121, 104–107 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission through the FP7MMP Integrated project PLAST4FUTURE (NMP2-SE-2012-314345). The authors thank C. Smith and K. T. Sørensen for technical support and W. Yan, J. Clausen and S. Xiao for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.Z., N.A.M. and A.K. conceived the ideas. X.Z. and E.H.-N. fabricated the nanoimprinted samples. X.Z. performed the simulations. C.V. suggested and built the optical setup for laser printing. X.Z. and C.V. developed the codes. X.Z. implemented the laser printing and prepared the figures. A.K. and N.A.M. provided feedback on the experiments. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Xiaolong Zhu, N. Asger Mortensen or Anders Kristensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3199 kb)

Supplementary information

Supplementary Movie 1 (MP4 7883 kb)

Supplementary information

Supplementary Movie 2 (GIF 18871 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Vannahme, C., Højlund-Nielsen, E. et al. Plasmonic colour laser printing. Nature Nanotech 11, 325–329 (2016). https://doi.org/10.1038/nnano.2015.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.285

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research