Commentary | Published:

Opportunities and challenges for quantum dot photovoltaics

Nature Nanotechnology volume 10, pages 994997 (2015) | Download Citation

  • A Correction to this article was published on 03 March 2016

This article has been updated

Although research into colloidal quantum dots has led to promising results for the realization of photovoltaic devices, a better understanding of the robustness and stability of these devices is necessary before commercial competiveness can be claimed.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

References

  1. 1.

    , , & Chem. Rev. 110, 389–458 (2010).

  2. 2.

    et al. Nature Commun. 5, 5093 (2014).

  3. 3.

    National Renewable Energy Laboratory (accessed 12 November 2015).

  4. 4.

    , , & Nature Mater. 13, 796–801 (2014).

  5. 5.

    , , , & Energ. Environ. Sci. 6, 3054–3059 (2013).

  6. 6.

    et al. Nature Mater. 13, 822–828 (2014).

  7. 7.

    et al. Sci. Rep. 5, 9945 (2015).

  8. 8.

    et al. ACS Nano 7, 5215–5222 (2013).

  9. 9.

    et al. J. Am. Chem. Soc. 135, 15913–15922 (2013).

  10. 10.

    et al. Nano Lett. 15, 1101–1108 (2015).

  11. 11.

    , & Nature Mater. 13, 233–240 (2014).

  12. 12.

    & Chem. Rev. 114, 863–882 (2014).

  13. 13.

    et al. Acc. Chem. Res. 46, 1261–1269 (2013).

  14. 14.

    , , & Science 324, 1542–1544 (2009).

  15. 15.

    et al. Science 334, 1530–1533 (2011).

  16. 16.

    , , & Chem. Soc. Rev. 42, 173–201 (2013).

  17. 17.

    et al. Nature Photon. 8, 392–399 (2014).

  18. 18.

    et al. Nature Mater. 13, 1033–1038 (2014).

  19. 19.

    et al. Nature Mater. 13, 1039–1043 (2014).

  20. 20.

    et al. Nano Lett. 15, 3286–3294 (2015).

  21. 21.

    & Nature Nanotech. 10, 1013–1026 (2015).

  22. 22.

    et al. Science 344, 1377–1380 (2014).

  23. 23.

    & J. Appl. Phys. 51, 3262–3268 (1980).

  24. 24.

    , & Science 324, 1417–1420 (2009).

  25. 25.

  26. 26.

  27. 27.

    et al. MRS Bull. 38, 703–711 (2013).

  28. 28.

    Sol. Energ. Mater. Sol. C 93, 394–412 (2009).

  29. 29.

    et al. Adv. Mater. 27, 116–121 (2015).

  30. 30.

    et al. ACS Nano 7, 10158–10166 (2013).

  31. 31.

  32. 32.

    Renew. Sust. Energ. Rev. 8, 303–334 (2004).

  33. 33.

    & Nature Nanotech. 10, 391–402 (2015).

  34. 34.

    et al. Preprint at (2015).

  35. 35.

    et al. Nature Photon. 9, 409–415 (2015).

  36. 36.

    et al. J. Mater. Chem. A 3, 1450–1457 (2015).

  37. 37.

    , , & IEEE J. Photovolt. 3, 1243–1249 (2013).

Download references

Author information

Affiliations

  1. Maksym V. Kovalenko is at the Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093, Switzerland, and at Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse 129, CH-8600, Switzerland

    • Maksym V. Kovalenko

Authors

  1. Search for Maksym V. Kovalenko in:

Corresponding author

Correspondence to Maksym V. Kovalenko.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nnano.2015.284

Further reading

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research