Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Opportunities and challenges for quantum dot photovoltaics

A Correction to this article was published on 03 March 2016

This article has been updated

Although research into colloidal quantum dots has led to promising results for the realization of photovoltaic devices, a better understanding of the robustness and stability of these devices is necessary before commercial competiveness can be claimed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An up-close look at colloidal QDs.
Figure 2: QD solar cells.
Figure 3: Idealized all-inorganic design of QD-based absorbing materials for PV applications.

Change history

References

  1. Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Chem. Rev. 110, 389–458 (2010).

    Article  CAS  Google Scholar 

  2. Chen, O. et al. Nature Commun. 5, 5093 (2014).

    Article  CAS  Google Scholar 

  3. National Renewable Energy Laboratory http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed 12 November 2015).

  4. Chuang, C.-H. M., Brown, P. R., Bulović, V. & Bawendi, M. G. Nature Mater. 13, 796–801 (2014).

    Article  CAS  Google Scholar 

  5. Piliego, C., Protesescu, L., Bisri, S. Z., Kovalenko, M. V. & Loi, M. A. Energ. Environ. Sci. 6, 3054–3059 (2013).

    Article  CAS  Google Scholar 

  6. Ning, Z. et al. Nature Mater. 13, 822–828 (2014).

    Article  CAS  Google Scholar 

  7. Crisp, R. W. et al. Sci. Rep. 5, 9945 (2015).

    Article  CAS  Google Scholar 

  8. Pan, Z. et al. ACS Nano 7, 5215–5222 (2013).

    Article  CAS  Google Scholar 

  9. Wang, J. et al. J. Am. Chem. Soc. 135, 15913–15922 (2013).

    Article  CAS  Google Scholar 

  10. Labelle, A. J. et al. Nano Lett. 15, 1101–1108 (2015).

    Article  CAS  Google Scholar 

  11. Lan, X., Masala, S. & Sargent, E. H. Nature Mater. 13, 233–240 (2014).

    Article  CAS  Google Scholar 

  12. Kramer, I. J. & Sargent, E. H. Chem. Rev. 114, 863–882 (2014).

    Article  CAS  Google Scholar 

  13. Padilha, L. A. et al. Acc. Chem. Res. 46, 1261–1269 (2013).

    Article  CAS  Google Scholar 

  14. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Science 324, 1542–1544 (2009).

    Article  CAS  Google Scholar 

  15. Semonin, O. E. et al. Science 334, 1530–1533 (2011).

    Article  CAS  Google Scholar 

  16. Huang, X., Han, S., Huang, W. & Liu, X. Chem. Soc. Rev. 42, 173–201 (2013).

    Article  CAS  Google Scholar 

  17. Meinardi, F. et al. Nature Photon. 8, 392–399 (2014).

    Article  CAS  Google Scholar 

  18. Tabachnyk, M. et al. Nature Mater. 13, 1033–1038 (2014).

    Article  CAS  Google Scholar 

  19. Thompson, N. J. et al. Nature Mater. 13, 1039–1043 (2014).

    Article  CAS  Google Scholar 

  20. Chuang, C.-H. M. et al. Nano Lett. 15, 3286–3294 (2015).

    Article  CAS  Google Scholar 

  21. Kagan, C. R. & Murray, C. B. Nature Nanotech. 10, 1013–1026 (2015).

    Article  CAS  Google Scholar 

  22. Boneschanscher, M. P. et al. Science 344, 1377–1380 (2014).

    Article  CAS  Google Scholar 

  23. Staebler, D. L. & Wronski, C. R. J. Appl. Phys. 51, 3262–3268 (1980).

    Article  CAS  Google Scholar 

  24. Kovalenko, M. V., Scheele, M. & Talapin, D. V. Science 324, 1417–1420 (2009).

    Article  CAS  Google Scholar 

  25. https://mitei.mit.edu/futureofsolar

  26. https://www.irena.org

  27. Supran, G. J. et al. MRS Bull. 38, 703–711 (2013).

    Article  Google Scholar 

  28. Krebs, F. C. Sol. Energ. Mater. Sol. C 93, 394–412 (2009).

    Article  CAS  Google Scholar 

  29. Kramer, I. J. et al. Adv. Mater. 27, 116–121 (2015).

    Article  CAS  Google Scholar 

  30. Pan, J. et al. ACS Nano 7, 10158–10166 (2013).

    Article  CAS  Google Scholar 

  31. www.picon-solar.de

  32. Fthenakis, V. M. Renew. Sust. Energ. Rev. 8, 303–334 (2004).

    Article  CAS  Google Scholar 

  33. Stranks, S. D. & Snaith, H. J. Nature Nanotech. 10, 391–402 (2015).

    Article  CAS  Google Scholar 

  34. Zhang, Y.-Y. et al. Preprint at http://arxiv.org/abs/1506.01301 (2015).

  35. Zhou, Y. et al. Nature Photon. 9, 409–415 (2015).

    Article  CAS  Google Scholar 

  36. Speirs, M. J. et al. J. Mater. Chem. A 3, 1450–1457 (2015).

    Article  CAS  Google Scholar 

  37. Holman, Z. C., Descoeudres, A., De Wolf, S. & Ballif, C. IEEE J. Photovolt. 3, 1243–1249 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksym V. Kovalenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, M. Opportunities and challenges for quantum dot photovoltaics. Nature Nanotech 10, 994–997 (2015). https://doi.org/10.1038/nnano.2015.284

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing