Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Opportunities and challenges for quantum dot photovoltaics

A Correction to this article was published on 03 March 2016

This article has been updated

Although research into colloidal quantum dots has led to promising results for the realization of photovoltaic devices, a better understanding of the robustness and stability of these devices is necessary before commercial competiveness can be claimed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: An up-close look at colloidal QDs.
Figure 2: QD solar cells.
Figure 3: Idealized all-inorganic design of QD-based absorbing materials for PV applications.

Change history

References

  1. 1

    Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Chem. Rev. 110, 389–458 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Chen, O. et al. Nature Commun. 5, 5093 (2014).

    CAS  Article  Google Scholar 

  3. 3

    National Renewable Energy Laboratory http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed 12 November 2015).

  4. 4

    Chuang, C.-H. M., Brown, P. R., Bulović, V. & Bawendi, M. G. Nature Mater. 13, 796–801 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Piliego, C., Protesescu, L., Bisri, S. Z., Kovalenko, M. V. & Loi, M. A. Energ. Environ. Sci. 6, 3054–3059 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Ning, Z. et al. Nature Mater. 13, 822–828 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Crisp, R. W. et al. Sci. Rep. 5, 9945 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Pan, Z. et al. ACS Nano 7, 5215–5222 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Wang, J. et al. J. Am. Chem. Soc. 135, 15913–15922 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Labelle, A. J. et al. Nano Lett. 15, 1101–1108 (2015).

    CAS  Article  Google Scholar 

  11. 11

    Lan, X., Masala, S. & Sargent, E. H. Nature Mater. 13, 233–240 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Kramer, I. J. & Sargent, E. H. Chem. Rev. 114, 863–882 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Padilha, L. A. et al. Acc. Chem. Res. 46, 1261–1269 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Science 324, 1542–1544 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Semonin, O. E. et al. Science 334, 1530–1533 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Huang, X., Han, S., Huang, W. & Liu, X. Chem. Soc. Rev. 42, 173–201 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Meinardi, F. et al. Nature Photon. 8, 392–399 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Tabachnyk, M. et al. Nature Mater. 13, 1033–1038 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Thompson, N. J. et al. Nature Mater. 13, 1039–1043 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Chuang, C.-H. M. et al. Nano Lett. 15, 3286–3294 (2015).

    CAS  Article  Google Scholar 

  21. 21

    Kagan, C. R. & Murray, C. B. Nature Nanotech. 10, 1013–1026 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Boneschanscher, M. P. et al. Science 344, 1377–1380 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Staebler, D. L. & Wronski, C. R. J. Appl. Phys. 51, 3262–3268 (1980).

    CAS  Article  Google Scholar 

  24. 24

    Kovalenko, M. V., Scheele, M. & Talapin, D. V. Science 324, 1417–1420 (2009).

    CAS  Article  Google Scholar 

  25. 25

    https://mitei.mit.edu/futureofsolar

  26. 26

    https://www.irena.org

  27. 27

    Supran, G. J. et al. MRS Bull. 38, 703–711 (2013).

    Article  Google Scholar 

  28. 28

    Krebs, F. C. Sol. Energ. Mater. Sol. C 93, 394–412 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Kramer, I. J. et al. Adv. Mater. 27, 116–121 (2015).

    CAS  Article  Google Scholar 

  30. 30

    Pan, J. et al. ACS Nano 7, 10158–10166 (2013).

    CAS  Article  Google Scholar 

  31. 31

    www.picon-solar.de

  32. 32

    Fthenakis, V. M. Renew. Sust. Energ. Rev. 8, 303–334 (2004).

    CAS  Article  Google Scholar 

  33. 33

    Stranks, S. D. & Snaith, H. J. Nature Nanotech. 10, 391–402 (2015).

    CAS  Article  Google Scholar 

  34. 34

    Zhang, Y.-Y. et al. Preprint at http://arxiv.org/abs/1506.01301 (2015).

  35. 35

    Zhou, Y. et al. Nature Photon. 9, 409–415 (2015).

    CAS  Article  Google Scholar 

  36. 36

    Speirs, M. J. et al. J. Mater. Chem. A 3, 1450–1457 (2015).

    CAS  Article  Google Scholar 

  37. 37

    Holman, Z. C., Descoeudres, A., De Wolf, S. & Ballif, C. IEEE J. Photovolt. 3, 1243–1249 (2013).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maksym V. Kovalenko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, M. Opportunities and challenges for quantum dot photovoltaics. Nature Nanotech 10, 994–997 (2015). https://doi.org/10.1038/nnano.2015.284

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research