Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reaching the quantum limit of sensitivity in electron spin resonance

Abstract

The detection and characterization of paramagnetic species by electron spin resonance (ESR) spectroscopy is widely used throughout chemistry, biology and materials science1, from in vivo imaging2 to distance measurements in spin-labelled proteins3. ESR relies on the inductive detection of microwave signals emitted by the spins into a coupled microwave resonator during their Larmor precession. However, such signals can be very small, prohibiting the application of ESR at the nanoscale (for example, at the single-cell level or on individual nanoparticles). Here, using a Josephson parametric microwave amplifier combined with high-quality-factor superconducting microresonators cooled at millikelvin temperatures, we improve the state-of-the-art sensitivity of inductive ESR detection by nearly four orders of magnitude4,5. We demonstrate the detection of 1,700 bismuth donor spins in silicon within a single Hahn6 echo with unit signal-to-noise ratio, reduced to 150 spins by averaging a single Carr–Purcell–Meiboom–Gill sequence7. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance. The detection volume of our resonator is 0.02 nl, and our approach can be readily scaled down further to improve sensitivity, providing a new versatile toolbox for ESR at the nanoscale.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experimental set-up and spin system.
Figure 2: Sample characterization.
Figure 3: Spectrometer sensitivity.
Figure 4: Further sensitivity improvement with the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence.

References

  1. Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, 2001).

    Google Scholar 

  2. Yoshimura, T. et al. In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice. Nature Biotechnol. 14, 992–994 (1996).

    CAS  Article  Google Scholar 

  3. Garbuio, L. et al. Orthogonal spin labeling and Gd(III)nitroxide distance measurements on bacteriophage t4-lysozyme. J. Phys. Chem. B 117, 3145–3153 (2013).

    CAS  Article  Google Scholar 

  4. Sigillito, A. J. et al. Fast, low-power manipulation of spin ensembles in superconducting microresonators. Appl. Phys. Lett. 104, 222407 (2014).

    Article  Google Scholar 

  5. Artzi, Y., Twig, Y. & Blank, A. Induction-detection electron spin resonance with spin sensitivity of a few tens of spins. Appl. Phys. Lett. 106, 084104 (2015).

    Article  Google Scholar 

  6. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    Article  Google Scholar 

  7. Mentink-Vigier, F. et al. Increasing sensitivity of pulse EPR experiments using echo train detection schemes. J. Magn. Reson. 236, 117–125 (2013).

    CAS  Article  Google Scholar 

  8. Wrachtrup, J., Von Borczyskowski, C., Bernard, J., Orritt, M. & Brown, R. Optical detection of magnetic resonance in a single molecule. Nature 363, 244–245 (1993).

    CAS  Article  Google Scholar 

  9. Grinolds, M. S. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nature Nanotech. 9, 279–284 (2014).

    CAS  Article  Google Scholar 

  10. Hoehne, F. et al. Lock-in detection for pulsed electrically detected magnetic resonance. Rev. Sci. Instrum. 83, 043907 (2012).

    Article  Google Scholar 

  11. Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    CAS  Article  Google Scholar 

  12. Manassen, Y., Hamers, R. J., Demuth, J. E. & Castellano, A. J. Jr . Direct observation of the precession of individual paramagnetic spins on oxidized silicon surfaces. Phys. Rev. Lett. 62, 2531–2534 (1989).

    CAS  Article  Google Scholar 

  13. Rugar, D., Yannoni, C. S. & Sidles, J. A. Mechanical detection of magnetic resonance. Nature 360, 563–566 (1992).

    Article  Google Scholar 

  14. Wallace, W. J. & Silsbee, R. H. Microstrip resonators for electron-spin resonance. Rev. Sci. Instrum. 62, 1754–1766 (1991).

    CAS  Article  Google Scholar 

  15. Narkowicz, R., Suter, D. & Stonies, R. Planar microresonators for EPR experiments. J. Magn. Reson. 175, 275–284 (2005).

    CAS  Article  Google Scholar 

  16. Benningshof, O. W. B., Mohebbi, H. R., Taminiau, I. A. J., Miao, G. X. & Cory, D. G. Superconducting microstrip resonator for pulsed ESR of thin films. J. Magn. Reson. 230, 84–87 (2013).

    CAS  Article  Google Scholar 

  17. Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

    CAS  Article  Google Scholar 

  18. Zhou, X. et al. Highgain weakly nonlinear flux-modulated Josephson parametric amplifier using a squid array. Phys. Rev. B 89, 214517 (2014).

    Article  Google Scholar 

  19. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  Google Scholar 

  20. Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Phys. 4, 929–931 (2008).

    Article  Google Scholar 

  21. Vijay, R., Slichter, D. H. & Siddiqi, I. Observation of quantum jumps in a superconducting artificial atom. Phys. Rev. Lett. 106, 110502 (2011).

    CAS  Article  Google Scholar 

  22. Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nature Nanotech. 4, 820–823 (2009).

    CAS  Article  Google Scholar 

  23. Stehlik, J. et al. Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier. Phys. Rev. Appl. 4, 014018 (2015).

    Article  Google Scholar 

  24. Hatridge, M., Vijay, R., Slichter, D. H., Clarke, J. & Siddiqi, I. Dispersive magnetometry with a quantum limited SQUID parametric amplifier. Phys. Rev. B 83, 134501 (2011).

    Article  Google Scholar 

  25. Feher, G. Electron spin resonance experiments on donors in silicon. i. Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959).

    CAS  Article  Google Scholar 

  26. Morley, G. W. et al. The initialization and manipulation of quantum information stored in silicon by bismuth dopants. Nature Mater. 9, 725–729 (2010).

    CAS  Article  Google Scholar 

  27. Dreher, L. et al. Electroelastic hyperfine tuning of phosphorus donors in silicon. Phys. Rev. Lett. 106, 037601 (2011).

    CAS  Article  Google Scholar 

  28. Wolfowicz, G. et al. Atomic clock transitions in silicon-based spin qubits. Nature Nanotech. 8, 561–564 (2013).

    CAS  Article  Google Scholar 

  29. Weis, C. D. et al. Electrical activation and electron spin resonance measurements of implanted bismuth in isotopically enriched silicon-28. Appl. Phys. Lett. 100, 172104 (2012).

    Article  Google Scholar 

  30. Ranjan, V. et al. Probing dynamics of an electron–spin ensemble via a superconducting resonator. Phys. Rev. Lett. 110, 067004 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge technical support from P. Sénat, D. Duet, J.-C. Tack, P. Pari, P. Forget, as well as useful discussions within the Quantronics Group. The authors also acknowledge support from the European Community's Seventh Framework Programme (FP7/2007-2013) through European Research Council grants nos. 615767 (CIRQUSS), 279781 (ASCENT) and 630070 (quRAM) and through the QIPC project SCALEQIT, and from C'Nano IdF through the QUANTROCRYO project. J.J.L.M. is supported by the Royal Society. C.C. Lo is supported by the Royal Commission for the Exhibition of 1851. B. Julsgaard and K. Mølmer acknowledge support from the Villum Foundation. C.D.W. and T.S. acknowledge support from the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

A.B., J.J.P., J.J.L.M. and P.B. designed the experiment. X.Z. and D.V. designed and fabricated the Josephson parametric amplifier. C.C.L., C.D.W., T.S. and M.L.W.T. provided the Bi-implanted isotopically purified Si sample. A.B., J.J.P., and Y.K. fabricated the sample and performed the measurements. A.B., J.J.P., Y.K., J.J.L.M. and P.B. analysed the data. A.B., J.J.P., B.J. and K.M. performed the numerical simulations. J.J.L.M., D.E., D.V. and P.B. supervised the project. A.B., J.J.P., Y.K., M.S., D.V., D.E., B.J., K.M., J.J.L.M. and P.B. all contributed to the writing of the paper.

Corresponding author

Correspondence to P. Bertet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 817 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bienfait, A., Pla, J., Kubo, Y. et al. Reaching the quantum limit of sensitivity in electron spin resonance. Nature Nanotech 11, 253–257 (2016). https://doi.org/10.1038/nnano.2015.282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.282

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research