Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing

Abstract

The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs—CG, GC and GG—could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson–Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Self-assembly of guanine-containing di-PNAs into well-ordered architectures.
Figure 2: Crystal structure of GC di-PNA.
Figure 3: The di-PNAs efficiently assemble into discrete architectures within a few minutes.
Figure 4: The PNA assemblies exhibit a red edge excitation shift with a broad range of emission wavelengths in the visible region.
Figure 5: PNA-based light-emitting FET.

References

  1. Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993).

    Article  CAS  Google Scholar 

  2. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide–amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article  CAS  Google Scholar 

  3. Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnol. 21, 1171–1178 (2003).

    Article  CAS  Google Scholar 

  4. Banwell, E. F. et al. Rational design and application of responsive alpha-helical peptide hydrogels. Nature Mater. 8, 596–600 (2009).

    Article  CAS  Google Scholar 

  5. Morris, K. L. et al. Chemically programmed self-sorting of gelator networks. Nature Commun. 4, 1480 (2013).

    Article  Google Scholar 

  6. Hirst, A. R. et al. Biocatalytic induction of supramolecular order. Nature Chem. 2, 1089–1094 (2010).

    Article  CAS  Google Scholar 

  7. De la Rica, R. & Matsui, H. Applications of peptide and protein-based materials in bionanotechnology. Chem. Soc. Rev. 39, 3499–3509 (2010).

    Article  CAS  Google Scholar 

  8. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    Article  CAS  Google Scholar 

  9. Yan, X., Zhu, P. & Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877–1890 (2010).

    Article  CAS  Google Scholar 

  10. Adler-Abramovich, L. et al. Self-assembled arrays of peptide nanotubes by vapour deposition. Nature Nanotech. 4, 849–854 (2009).

    Article  CAS  Google Scholar 

  11. Amdursky, N. et al. Blue luminescence based on quantum confinement at peptide nanotubes. Nano Lett. 9, 3111–3115 (2009).

    Article  CAS  Google Scholar 

  12. Adler-Abramovich, L. & Gazit, E. The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem. Soc. Rev. 43, 6881–6893 (2014).

    Article  CAS  Google Scholar 

  13. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  14. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  15. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article  CAS  Google Scholar 

  16. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  Google Scholar 

  17. Egholm, M., Buchardt, O. & Nielsen, P. E. Peptide nucleic acids (PNA). Oligonucleotide analogues with an achiral peptide backbone. J. Am. Chem. Soc. 1, 1895–1897 (1992).

    Article  Google Scholar 

  18. Nielsen, P. E., Egholm, M., Berg, R. H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    Article  CAS  Google Scholar 

  19. Ura, Y., Beierle, J. M., Leman, L. J., Orgel, L. E. & Ghadiri, M. R. Self-assembling sequence-adaptive peptide nucleic acids. Science 325, 73–77 (2009).

    Article  CAS  Google Scholar 

  20. Li, X. et al. Supramolecular nanofibers and hydrogels of nucleopeptides. Angew. Chem. Int. Ed. 50, 9365–9369 (2011).

    Article  CAS  Google Scholar 

  21. Bonifazi, D., Carloni, L. E., Corvaglia, V. & Delforge, A. Peptide nucleic acids in materials science. Artif. DNA PNA XNA 3, 112–122 (2012).

    Article  Google Scholar 

  22. Guler, M. O., Pokorski, J. K., Appella, D. H. & Stupp, S. I. Enhanced oligonucleotide binding to self-assembled nanofibers. Bioconjug. Chem. 16, 501–503 (2005).

    Article  CAS  Google Scholar 

  23. Böhler, C., Nielsen, P. E. & Orgel, L. E. Template switching between PNA and RNA oligonucleotides. Nature 376, 578–581 (1995).

    Article  Google Scholar 

  24. Uhlmann, E., Peyman, A., Breipohl, G. & Will, D. W. PNA: synthetic polyamide nucleic acids with unusual binding properties. Angew. Chem. Int. Ed. 37, 2796–2823 (1998).

    Article  CAS  Google Scholar 

  25. Davis, J. T. & Spada, G. P. Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem. Soc. Rev. 36, 296–313 (2007).

    Article  CAS  Google Scholar 

  26. Menchise, V. et al. Insights into peptide nucleic acid (PNA) structural features: the crystal structure of a D-lysine-based chiral PNA–DNA duplex. Proc. Natl Acad. Sci. USA 100, 12021–12026 (2003).

    Article  CAS  Google Scholar 

  27. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  Google Scholar 

  28. Trushko, A., Schäffer, E. & Howard, J. The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force. Proc. Natl Acad. Sci. USA 110, 14670–14675 (2013).

    Article  CAS  Google Scholar 

  29. Ikezoe, Y., Washino, G., Uemura, T., Kitagawa, S. & Matsui, H. Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nature Mater. 11, 1081–1085 (2012).

    Article  CAS  Google Scholar 

  30. Demchenko, A. P. The red-edge effect: 30 years of exploration. Luminesence 17, 19–42 (2002).

    Article  CAS  Google Scholar 

  31. Cushing, S. K., Li, M., Huang, F. & Wu, N. Origin of strong excitation wavelength dependent fluoresence of graphene oxide. ACS Nano 8, 1002–1013 (2014).

    Article  CAS  Google Scholar 

  32. Muccini, M. A bright future for organic field-effect transistors. Nature Mater. 5, 605–613 (2006).

    Article  CAS  Google Scholar 

  33. Incardona, M. F. et al. EDNA: a framework for plugin-based applications applied to X-ray experiment online data analysis. J. Synchrotron Radiat. 16, 872–879 (2009).

    Article  Google Scholar 

  34. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D 65, 148–155 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Israeli National Nanotechnology Initiative and Helmsley Charitable Trust for a focal technology area on Nanomedicine for Personalized Theranostics. The authors thank members of the Gazit Laboratory for helpful discussions, Y. Salitra for help with PNA synthesis and O. Yaniv for advice on crystallization experiments. The authors acknowledge the ESRF for synchrotron beam time and the staff scientists of the ID29 beamline for their assistance. O. Berger is supported by a fellowship from the Argentinean Friends of Tel Aviv University Association.

Author information

Authors and Affiliations

Authors

Contributions

O.B., L.A-A., L.B., Y.E. and E.G. designed the study. O.B., M.L-S., Y.L-P. and M.B. performed the experiments. O.B., A.G., T.S. and Y.E. analysed the data. F.F., L.J.W.S., E.M. and T.F. performed and analysed the X-ray diffraction experiments. F.P. performed OFET experiments. O.B., L.A-A. and E.G. prepared the manuscript.

Corresponding author

Correspondence to Ehud Gazit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 617 kb)

Supplementary information

Supplementary Movie 1 (MP4 46352 kb)

Supplementary information

Supplementary Movie 2 (MP4 6015 kb)

Supplementary information

Supplementary information (CIF 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berger, O., Adler-Abramovich, L., Levy-Sakin, M. et al. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing. Nature Nanotech 10, 353–360 (2015). https://doi.org/10.1038/nnano.2015.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.27

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research