Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane


Biological ion channels are molecular gatekeepers that control transport across cell membranes. Recreating the functional principle of such systems and extending it beyond physiological ionic cargo is both scientifically exciting and technologically relevant to sensing or drug release1,2. However, fabricating synthetic channels1,3 with a predictable structure remains a significant challenge. Here, we use DNA as a building material4,5,6,7,8 to create an atomistically determined molecular valve that can control when and which cargo is transported across a bilayer. The valve, which is made from seven concatenated DNA strands, can bind a specific ligand and, in response, undergo a nanomechanical change to open up the membrane-spanning channel. It is also able to distinguish with high selectivity the transport of small organic molecules that differ by the presence of a positively or negatively charged group. The DNA device could be used for controlled drug release and the building of synthetic cell-like or logic ionic networks9,10.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A rationally designed DNA nanopore features a nanomechanical and sequence-specific gate to regulate transmembrane flux.
Figure 2: Nanopore NP is of the expected dimensions and spans a lipid bilayer, thereby confirming the validity of the novel pore design.
Figure 3: A DNA key leads to the triggered opening of NP-C to yield NP-O, and both pores have distinct and expected molecular properties.
Figure 4: NP-C can control the DNA-triggered and charge-selective release of small-molecule cargo from a reservoir.


  1. 1

    Litvinchuk, S. et al. Synthetic pores with reactive signal amplifiers as artificial tongues. Nature Mater. 6, 576–580 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Mayer, M. & Yang, J. Engineered ion channels as emerging tools for chemical biology. Acc. Chem. Res. 46, 2998–3008 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485–488 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Burns, J. R., Stulz, E. & Howorka, S. Self-assembled DNA nanopores that span lipid bilayers. Nano Lett. 13, 2351–2356 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Burns, J. R., Al-Juffali, N., Janes, S. M. & Howorka, S. Membrane-spanning DNA nanopores with cytotoxic effect. Angew. Chem. Int. Ed. 53, 12466–12470 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Burns, J. R. et al. Lipid bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew. Chem. Int. Ed. 52, 12069–12072 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Seifert, A. et al. Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS Nano 9, 1117–1126 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Maglia, G. et al. Droplet networks with incorporated protein diodes show collective properties. Nature Nanotech. 4, 437–440 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Villar, G., Graham, A. D. & Bayley, H. A tissue-like printed material. Science 340, 48–52 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Chowdhury, S., Jarecki, B. W. & Chanda, B. A molecular framework for temperature-dependent gating of ion channels. Cell 158, 1148–1158 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Kocer, A., Walko, M., Meijberg, W. & Feringa, B. L. A light-actuated nanovalve derived from a channel protein. Science 309, 755–758 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Howorka, S. & Siwy, Z. Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Wang, Y., Zheng, D., Tan, Q., Wang, M. X. & Gu, L. Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nature Nanotech. 6, 668–674 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nature Biotechnol. 30, 344–348 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nature Biotechnol. 30, 349–353 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Wei, R. S., Gatterdam, V., Wieneke, R., Tampe, R. & Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nature Nanotech. 7, 257–263 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Traversi, F. et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotech. 8, 939–945 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Geng, J. et al. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514, 612–615 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature Nanotech. 5, 807–814 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Wollman, A. J., Sanchez-Cano, C., Carstairs, H. M., Cross, R. A. & Turberfield, A. J. Transport and self-organization across different length scales powered by motor proteins and programmed by DNA. Nature Nanotech. 9, 44–47 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Sacca, B. & Niemeyer, C. M. Functionalization of DNA nanostructures with proteins. Chem. Soc. Rev. 40, 5910–5921 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science 324, 67–71 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Krishnan, S. & Simmel, F. C. Nanotechnology: deadly DNA. Nature Chem. 7, 17–18 (2014).

    Article  Google Scholar 

  28. 28

    Eisenstein, M. Molecular engineering: changing the channel. Nature Methods 10, 10–11 (2013).

    Article  Google Scholar 

  29. 29

    Yoo, J. & Aksimentiev, A. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proc. Natl Acad. Sci. USA 110, 20099–20104 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Bai, X. C., Martin, T. G., Scheres, S. H. & Dietz, H. Cryo-EM structure of a 3D DNA-origami object. Proc. Natl Acad. Sci. USA 109, 20012–20017 (2012).

    CAS  Article  Google Scholar 

  32. 32

    Song, L. et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).

    CAS  Article  Google Scholar 

  33. 33

    Rinker, S., Ke, Y. G., Liu, Y., Chhabra, R. & Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand–protein binding. Nature Nanotech. 3, 418–422 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Wilner, O. I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nature Nanotech. 4, 249–254 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Bussiek, M., Mucke, N. & Langowski, J. Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution. Nucleic Acids Res. 31, e137 (2003).

    Article  Google Scholar 

  36. 36

    Mitchell, N., Ebner, A., Hinterdorfer, P., Tampe, R. & Howorka, S. Chemical tags mediate the self-assembly of DNA strands into supramolecular structures. Small 6, 1732–1735 (2010).

    CAS  Article  Google Scholar 

  37. 37

    Del Rio Martinez, J. M., Zaitseva, E., Petersen, S., Baaken, G. & Behrends, J. C. Automated formation of lipid membrane microarrays for ionic single-molecule sensing with protein nanopores. Small 11, 119–125 (2015).

    CAS  Article  Google Scholar 

  38. 38

    Chen, R. F. & Knutson, J. R. Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers. Anal. Biochem. 172, 61–77 (1988).

    CAS  Article  Google Scholar 

  39. 39

    Moscho, A., Orwar, O., Chiu, D. T., Modi, B. P. & Zare, R. N. Rapid preparation of giant unilamellar vesicles. Proc. Natl Acad. Sci. USA 93, 11443–11447 (1996).

    CAS  Article  Google Scholar 

Download references


This research was funded by the Leverhulme Trust (RPG-170), UCL Chemistry and the BBSRC (grant ref. BB/M012700/1). The authors thank A. Pyne and B. Hoogenboom from the London Centre for Nanotechnology for assistance with the AFM analysis of DNA nanopores, and H. Martin in aiding J.B. to render the images of the pores.

Author information




J.B. and S.H. designed the DNA nanopores. J.B. carried out all experiments except nanopore recordings, which were conducted by A.S. N.F. co-supervised A.S. S.H. conceived the project, supervised J.B. and A.S., and wrote the manuscript with data input from J.B. and A.S.

Corresponding author

Correspondence to Stefan Howorka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1789 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burns, J., Seifert, A., Fertig, N. et al. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nature Nanotech 11, 152–156 (2016).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research