Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computing in mammalian cells with nucleic acid strand exchange

Abstract

DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacement and exchange reactions to mammalian cells and report DNA circuitry that can directly interact with a native mRNA. We began by optimizing the cellular performance of fluorescent reporters based on four-way strand exchange reactions and identified robust design principles by systematically varying the molecular structure, chemistry and delivery method. Next, we developed and tested AND and OR logic gates based on four-way strand exchange, demonstrating the feasibility of multi-input logic. Finally, we established that functional siRNA could be activated through strand exchange, and used native mRNA as programmable scaffolds for co-localizing gates and visualizing their operation with subcellular resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Empirical design parameters determine in-cell performance.
Figure 2: Strand exchange reactions work in mammalian cells.
Figure 3: Strand exchange-based OR and AND logic gates work in mammalian cells.
Figure 4: A functional siRNA can be activated through four-way strand exchange.
Figure 5: Endogenous mRNA and mMTRIPS can serve as scaffolds for strand exchange reactions.
Figure 6: ACTB mRNA-scaffolded mMTRIP AND logic gates work in cells.

Similar content being viewed by others

References

  1. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chem. 3, 103–113 (2011).

    Article  CAS  Google Scholar 

  2. Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

    Article  CAS  Google Scholar 

  3. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    Article  CAS  Google Scholar 

  4. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R. & Shapiro, E. An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004).

    Article  CAS  Google Scholar 

  5. Elbaz, J. et al. DNA computing circuits using libraries of DNAzyme subunits. Nature Nanotech. 5, 417–422 (2010).

    Article  CAS  Google Scholar 

  6. Benenson, Y. et al. Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001).

    Article  CAS  Google Scholar 

  7. Chen, Y.-J. et al. Programmable chemical controllers made from DNA. Nature Nanotech. 8, 755–762 (2013).

    Article  CAS  Google Scholar 

  8. Soloveichik, D., Seelig, G. & Winfree, E. DNA as a universal substrate for chemical kinetics. Proc. Natl Acad. Sci. USA 107, 5393–5398 (2010).

    Article  CAS  Google Scholar 

  9. Oishi, K. & Klavins, E. Biomolecular implementation of linear I/O systems. IET Syst. Biol. 5, 252–260 (2011).

    Article  CAS  Google Scholar 

  10. Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).

    Article  CAS  Google Scholar 

  11. Dirks, R. M. & Pierce, N. A. Triggered amplification by hybridization chain reaction. Proc. Natl Acad. Sci. USA 101, 15275–15278 (2004).

    Article  CAS  Google Scholar 

  12. Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    Article  CAS  Google Scholar 

  13. Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007).

    Article  CAS  Google Scholar 

  14. Seelig, G., Yurke, B. & Winfree, E. Catalyzed relaxation of a metastable DNA fuel. J. Am. Chem. Soc. 128, 12211–12220 (2006).

    Article  CAS  Google Scholar 

  15. Turberfield, A. J. et al. DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003).

    Article  CAS  Google Scholar 

  16. Venkataraman, S., Dirks, R. M., Rothemund, P. W., Winfree, E. & Pierce, N. A. An autonomous polymerization motor powered by DNA hybridization. Nature Nanotech. 2, 490–494 (2007).

    Article  Google Scholar 

  17. Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science 324, 67–71 (2009).

    Article  CAS  Google Scholar 

  18. Green, S., Bath, J. & Turberfield, A. J. Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys. Rev. Lett. 101, 238101 (2008).

    Article  CAS  Google Scholar 

  19. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    Article  CAS  Google Scholar 

  20. Yurke, B., Turberfield, A. J., Mills, A. P. Jr., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  CAS  Google Scholar 

  21. Green, S. J., Lubrich, D. & Turberfield, A. J. DNA hairpins: fuel for autonomous DNA devices. Biophys. J. 91, 2966–2975 (2006).

    Article  CAS  Google Scholar 

  22. Zhang, D. Y., Hariadi, R. F., Choi, H. M. T. & Winfree, E. Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nature Commun. 4, 1965 (2013).

    Article  Google Scholar 

  23. Chen, Y.-J., Groves, B., Muscat, R. A. & Seelig, G. DNA nanotechnology from the test tube to the cell. Nature Nanotech. 10, 748–760 (2015).

    Article  CAS  Google Scholar 

  24. Choi, H. M. T. et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nature Biotech. 28, 1208–1212 (2010).

    Article  CAS  Google Scholar 

  25. Duose, D. Y. et al. Configuring robust DNA strand displacement reactions for in situ molecular analyses. Nucleic Acids Res. 40, 3289–3298 (2012).

    Article  CAS  Google Scholar 

  26. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  Google Scholar 

  27. Amir, Y. et al. Universal computing by DNA origami robots in a living animal. Nature Nanotech. 9, 353–357 (2014).

    Article  CAS  Google Scholar 

  28. Rudchenko, M. et al. Autonomous molecular cascades for evaluation of cell surfaces. Nature Nanotech. 8, 580–586 (2013).

    Article  CAS  Google Scholar 

  29. Jiang, Q. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396–13403 (2012).

    Article  CAS  Google Scholar 

  30. Schüller, V. J. et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5, 9696–9702 (2011).

    Article  Google Scholar 

  31. Modi, S., Nizak, C., Surana, S., Halder, S. & Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nature Nanotech. 8, 459–467 (2013).

    Article  CAS  Google Scholar 

  32. Kahan-Hanum, M., Douek, Y., Adar, R. & Shapiro, E. A library of programmable DNAzymes that operate in a cellular environment. Sci. Rep. 3, 1535 (2013).

    Article  Google Scholar 

  33. Delebecque, C. J., Lindner, A. B., Silver, P. A. & Aldaye, F. A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    Article  CAS  Google Scholar 

  34. Hemphill, J. & Deiters, A. DNA computation in mammalian cells: microRNA logic operations. J. Am. Chem. Soc. 135, 10512–10518 (2013).

    Article  CAS  Google Scholar 

  35. Chen, S. X., Zhang, D. Y. & Seelig, G. Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. Nature Chem. 5, 782–789 (2013).

    Article  CAS  Google Scholar 

  36. Radding, C. M., Beattie, K. L., Holloman, W. K. & Wiegand, R. C. Uptake of homologous single-stranded fragments by superhelical DNA. J. Mol. Biol. 116, 805–824 (1977).

    Article  Google Scholar 

  37. Thompson, B. J., Camien, M. N. & Warner, R. C. Kinetics of branch migration in double-stranded DNA. Proc. Natl Acad. Sci. USA 73, 2299–2303 (1976).

    Article  CAS  Google Scholar 

  38. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article  CAS  Google Scholar 

  39. Santangelo, P. J. Molecular beacons and related probes for intracellular RNA imaging. WIREs. Nanomedic. Nanobiotech. 2, 11–19 (2010).

    Article  CAS  Google Scholar 

  40. Bramsen, J. B. et al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res. 37, 2867–2881 (2009).

    Article  CAS  Google Scholar 

  41. Amarzguioui, M., Holen, T., Babaie, E. & Prydz, H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31, 589–595 (2003).

    Article  CAS  Google Scholar 

  42. Afonin, K. A. et al. Activation of different split functionalities on re-association of RNA-DNA hybrids. Nature Nanotech. 8, 296–304 (2013).

    Article  CAS  Google Scholar 

  43. Dias, N. & Stein, C. A. Antisense oligonucleotides: basic concepts and mechanisms. Mol. Cancer Ther. 1, 347–355 (2002).

    Article  CAS  Google Scholar 

  44. Harborth, J. et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 13, 83–105 (2003).

    Article  CAS  Google Scholar 

  45. Tyagi, S. Imaging intracellular RNA distribution and dynamics in living cells. Nature Methods 6, 331–338 (2009).

    Article  CAS  Google Scholar 

  46. Lennox, K. et al. Characterization of modified antisense oligonucleotides in Xenopus laevis embryos. Oligonucleotides 16, 26–42 (2006).

    Article  CAS  Google Scholar 

  47. Czauderna, F. et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716 (2003).

    Article  CAS  Google Scholar 

  48. Santangelo, P. J. et al. Single molecule–sensitive probes for imaging RNA in live cells. Nature Methods 6, 10–14 (2009).

    Article  Google Scholar 

  49. Sivaraman, D., Biswas, P., Cella, L. N., Yates, M. V. & Chen, W. Detecting RNA viruses in living mammalian cells by fluorescence microscopy. Trends Biotechnol. 29, 307–313 (2011).

    Article  CAS  Google Scholar 

  50. Lifland, A. W., Zurla, C., Yu, J. & Santangelo, P. J. Dynamics of native β-actin mRNA transport in the cytoplasm. Traffic 12, 1000–1011 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Soloveichik, E. Winfree, and D. Y. Zhang for their help in designing the logic AND gate. This material is based on work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. W911NF-11-2-0068 to G.S. and P.J.S. Additional support was provided by NSF CAREER Award No. 1253691 (P.J.S.), regarding RNA imaging, and NIH GM094198 (P.J.S.), for the use of hRSV cell models during development.

Author information

Authors and Affiliations

Authors

Contributions

P.J.S. and G.S. conceived the project, B.G., Y.-J.C., C.Z., S.P., P.J.S. and G.S. designed experiments, B.G., Y.-J.C., C.Z., and S.P. performed the experiments, J.L.K. and P.S. developed the monovalent MTRIPs, B.G., Y.-J.C., C.Z., analysed the data, B.G. Y.-J. C., C.Z., P.J.S, and G.S. wrote the paper.

Corresponding authors

Correspondence to Philip J. Santangelo or Georg Seelig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7969 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groves, B., Chen, YJ., Zurla, C. et al. Computing in mammalian cells with nucleic acid strand exchange. Nature Nanotech 11, 287–294 (2016). https://doi.org/10.1038/nnano.2015.278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing