Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultralow effective work function surfaces using diamondoid monolayers

Abstract

Electron emission is critical for a host of modern fabrication and analysis applications including mass spectrometry, electron imaging and nanopatterning. Here, we report that monolayers of diamondoids effectively confer dramatically enhanced field emission properties to metal surfaces. We attribute the improved emission to a significant reduction of the work function rather than a geometric enhancement. This effect depends on the particular diamondoid isomer, with [121]tetramantane-2-thiol reducing gold's work function from 5.1 eV to 1.60 ± 0.3 eV, corresponding to an increase in current by a factor of over 13,000. This reduction in work function is the largest reported for any organic species and also the largest for any air-stable compound1,2,3. This effect was not observed for sp3-hybridized alkanes, nor for smaller diamondoid molecules. The magnitude of the enhancement, molecule specificity and elimination of gold metal rearrangement precludes geometric factors as the dominant contribution. Instead, we attribute this effect to the stable radical cation of diamondoids. Our computed enhancement due to a positively charged radical cation was in agreement with the measured work functions to within ±0.3 eV, suggesting a new paradigm for low-work-function coatings based on the design of nanoparticles with stable radical cations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Field emission apparatus.
Figure 2: Diamondoid field emission.
Figure 3: Summary of the work functions obtained using the various experimental and computational techniques used in the present work.
Figure 4: Diamondoid radical cation mechanism.
Figure 5: Calculated field emission with radical cations.

Similar content being viewed by others

References

  1. Alloway, D. M. et al. Tuning the effective work function of gold and silver using ω-functionalized alkanethiols: varying surface composition through dilution and choice of terminal groups. J. Phys. Chem. C 113, 20328–20334 (2009).

    Article  CAS  Google Scholar 

  2. Alloway, D. M. et al. Interface dipoles arising from self-assembled monolayers on gold: UV–photoemission studies of alkanethiols and partially fluorinated alkanethiols. J. Phys. Chem. B 107, 11690–11699 (2003).

    Article  CAS  Google Scholar 

  3. Bröker, B. et al. Gold work function reduction by 2.2eV with an air-stable molecular donor layer. Appl. Phys. Lett. 93, 243303 (2008).

    Article  Google Scholar 

  4. Robertson, J. Mechanisms of electron field emission from diamond, diamond-like carbon, and nanostructured carbon. J. Vac. Sci. Technol. B 17, 659–665 (1999).

    Article  CAS  Google Scholar 

  5. Silva, S. R. P., Carey, J. D., Guo, X., Tsang, W. M. & Poa, C. H. P. Electron field emission from carbon-based materials. Proc. ICMAT 03 482, 79–85 (2005).

    CAS  Google Scholar 

  6. Zhu, W., Kochanski, G. P. & Jin, S. Low-field electron emission from undoped nanostructured diamond. Science 282, 1471–1473 (1998).

    Article  CAS  Google Scholar 

  7. Koeck, F. A. M., Garguilo, J. M. & Nemanich, R. J. On the thermionic emission from nitrogen-doped diamond films with respect to energy conversion. Diamond Relat. Mater. 13, 2052–2055 (2004).

    Article  CAS  Google Scholar 

  8. Koeck, F. A. M. & Nemanich, R. J. Emission characterization from nitrogen-doped diamond with respect to energy conversion. Diamond Relat. Mater. 15, 217–220 (2006).

    Article  CAS  Google Scholar 

  9. Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 37, 129–281 (2002).

    Article  Google Scholar 

  10. Dahl, J. E., Liu, S. G. & Carlson, R. M. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299, 96–99 (2003).

    Article  CAS  Google Scholar 

  11. Schwertfeger, H., Fokin, A. A. & Schreiner, P. R. Diamonds are a chemist's best friend: diamondoid chemistry beyond adamantane. Angew. Chem. Int. Ed. 47, 1022–1036 (2008).

    Article  CAS  Google Scholar 

  12. Clay, W. A., Dahl, J. E. P., Carlson, R. M. K., Melosh, N. A. & Shen, Z.-X. Physical properties of materials derived from diamondoid molecules. Rep. Prog. Phys. 78, 016501 (2015).

    Article  CAS  Google Scholar 

  13. Clay, W. A. et al. Diamondoids as low-κ dielectric materials. Appl. Phys. Lett. 93, 172901 (2008).

    Article  Google Scholar 

  14. Willey, T. M. et al. Near-edge X-ray absorption fine structure spectroscopy of diamondoid thiol monolayers on gold. J. Am. Chem. Soc. 130, 10536–10544 (2008).

    Article  CAS  Google Scholar 

  15. Willey, T. M. et al. Determining orientational structure of diamondoid thiols attached to silver using near-edge X-ray absorption fine structure spectroscopy. J. Electron Spectrosc. Rel. Phenom. 172, 69–77 (2009).

    Article  CAS  Google Scholar 

  16. Schreiner, P. R. et al. Functionalized nanodiamonds: triamantane and [121]tetramantane. J. Org. Chem. 71, 6709–6720 (2006).

    Article  CAS  Google Scholar 

  17. Schwertfeger, H. et al. Diamondoid phosphines—selective phosphorylation of nanodiamonds[1]. Adv. Synth. Catal. 352, 609–615 (2010).

    Article  CAS  Google Scholar 

  18. Tkachenko, B. A. et al. Functionalized nanodiamonds part 3: thiolation of tertiary/bridgehead alcohols. Org. Lett. 8, 1767–1770 (2006).

    Article  CAS  Google Scholar 

  19. Clay, W. A. et al. Origin of the monochromatic photoemission peak in diamondoid monolayers. Nano Lett. 9, 57–61 (2009).

    Article  CAS  Google Scholar 

  20. Yang, W. L. et al. Monochromatic electron photoemission from diamondoid monolayers. Science 316, 1460–1462 (2007).

    Article  CAS  Google Scholar 

  21. Fokin, A. A. et al. Stable alkanes containing very long carbon–carbon bonds. J. Am. Chem. Soc. 134, 13641–13650 (2012).

    Article  CAS  Google Scholar 

  22. Schreiner, P. R. et al. Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces. Nature 477, 308–311 (2011).

    Article  CAS  Google Scholar 

  23. Willey, T. M. et al. Molecular limits to the quantum confinement model in diamond clusters. Phys. Rev. Lett. 95, 113401 (2005).

    Article  CAS  Google Scholar 

  24. LaRue, J. L. et al. The work function of submonolayer cesium-covered gold: a photoelectron spectroscopy study. J. Chem. Phys. 129, 024709 (2008).

    Article  CAS  Google Scholar 

  25. Forbes, R. G. Simple good approximations for the special elliptic functions in standard Fowler–Nordheim tunneling theory for a Schottky–Nordheim barrier. Appl. Phys. Lett. 89, 113122 (2006).

    Article  Google Scholar 

  26. Fokin, A. A., Tkachenko, B. A., Gunchenko, P. A., Gusev, D. V. & Schreiner, P. R. Functionalized nanodiamonds part I.: an experimental assessment of diamantane and computational predictions for higher diamondoids. Chem. Eur. J. 11, 7091–7101 (2005).

    Article  CAS  Google Scholar 

  27. Guerrero, A. et al. Single-electron self-exchange between cage hydrocarbons and their radical cations in the gas phase. ChemPhysChem 11, 713–721 (2010).

    Article  CAS  Google Scholar 

  28. Lenzke, K. et al. Experimental determination of the ionization potentials of the first five members of the nanodiamond series. J. Chem. Phys. 127, 084320 (2007).

    Article  CAS  Google Scholar 

  29. Pirali, O., Alvaro Galué, H., Dahl, J. E., Carlson, R. M. K. & Oomens, J. Infrared spectra and structures of diamantyl and triamantyl carbocations. Int. J. Mass Spectrom. 297, 55–62 (2010).

    Article  CAS  Google Scholar 

  30. Steglich, M., Huisken, F., Dahl, J. E., Carlson, R. M. K. & Henning, Th. Electronic spectroscopy of FUV-irradiated diamondoids: a combined experimental and theoretical study. Astrophys. J. 729, 91 (2011).

    Article  Google Scholar 

  31. Chou, S. H., Voss, J., Vojvodic, A., Howe, R. T. & Abild-Pedersen, F. DFT study of atomically-modified alkali-earth metal oxide films on tungsten. J. Phys. Chem. C 118, 11303–11309 (2014).

    Article  CAS  Google Scholar 

  32. Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

    Article  Google Scholar 

  33. Lu, X., Grobis, M., Khoo, K. H., Louie, S. G. & Crommie, M. F. Charge transfer and screening in individual C60 molecules on metal substrates: a scanning tunneling spectroscopy and theoretical study. Phys. Rev. B 70, 115418 (2004).

    Article  Google Scholar 

  34. Li, F. H. et al. Covalent attachment of diamondoid phosphonic acid dichlorides to tungsten oxide surfaces. Langmuir 29, 9790–9797 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy Office of Basic Energy Sciences, Materials Sciences and Engineering Division (contract no. DE-AC02-76SF00515). The authors thank F. Wang and T. Carver for metal sputtering, S. Sun for assistance with UPS measurements and T. Deveraux and A. Sorini for discussions about the DFT model.

Author information

Authors and Affiliations

Authors

Contributions

K.T.N., C.G., Z.S. and N.A.M. conceived and designed the electron emission experiments. J.E.D. and R.M.K.C. isolated and purified the unfunctionalized diamondoids. B.A.T., A.A.F. and P.R.S. designed and performed the thiol functionalization. K.T.N., C.G., J.D.F. and W.C. developed the attachment and monolayer UPS characterization. K.T.N., C.G. and N.A.M. performed the computations and analysed the emissions data. K.T.N., J.D.F. and N.A.M. performed the DFT calculations, and the paper was primarily written by K.T.N., C.G. and N.A.M., with edits by all authors.

Corresponding author

Correspondence to Nicholas A. Melosh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narasimha, K., Ge, C., Fabbri, J. et al. Ultralow effective work function surfaces using diamondoid monolayers. Nature Nanotech 11, 267–272 (2016). https://doi.org/10.1038/nnano.2015.277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing