Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions

Abstract

Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule with a strong hysteresis and large high-to-low current ratios.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organometallic single-molecule junctions bearing Ru, Fe and Mo metal centres to provide charge and spin degrees of freedom.
Figure 2: High-to-low current ratios for type I and type II curves.
Figure 3: Two-channel transport mechanism in single-molecule junctions and its influence on current switching and hysteresis.
Figure 4: DFT-derived transmission and molecular orbitals as well as transport characteristics calculated under finite bias.

Similar content being viewed by others

References

  1. Van der Molen, S. J. & Liljeroth, P. Charge transport through molecular switches. J. Phys. 22, 133001 (2010).

    Google Scholar 

  2. Song, H. et al. Observation of molecular orbital gating. Nature 462, 1039–1043 (2009).

    Article  CAS  Google Scholar 

  3. Liao, J. et al. Cyclic conductance switching in networks of redox-active molecular junctions. Nano Lett. 10, 759–764 (2010).

    Article  CAS  Google Scholar 

  4. Irie, M. Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000).

    Article  CAS  Google Scholar 

  5. Dulic, D. et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

    Article  Google Scholar 

  6. Kronemeijer, A. J. et al. Reversible conductance switching in molecular devices. Adv. Mat. 20, 1467–1473 (2008).

    Article  CAS  Google Scholar 

  7. Van der Molen, S. J. et al. Light-controlled conductance switching of ordered metal–molecule-metal devices. Nano Lett. 9, 76–80 (2009).

    Article  CAS  Google Scholar 

  8. Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nature Nanotech. 4, 230–234 (2009).

    Article  CAS  Google Scholar 

  9. Blum, A. S. et al. Molecularly inherent voltage-controlled conductance switching. Nature Mater. 4, 167–172 (2005).

    Article  CAS  Google Scholar 

  10. Lörtscher, E., Ciszek, J. W., Tour, J. M. & Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006).

    Article  Google Scholar 

  11. Meded, V., Bagrets, A., Arnold, A. & Evers, F. Molecular switch controlled by pulsed bias voltages. Small 5, 2218–2223 (2009).

    Article  CAS  Google Scholar 

  12. Kahn, O. & Martinez, C. J. Spin-transition polymers: From molecular materials toward memory devices. Science 279, 44–48 (1998).

    Article  CAS  Google Scholar 

  13. Sato, O., Tao, J. & Zhand, Y.-Z. Control of magnetic properties through external stimuli. Angew. Chem. Int. Ed. 46, 2152–2187 (2007).

    Article  CAS  Google Scholar 

  14. Baadji, N. et al. Electrostatic spin crossover effect in polar magnetic molecules. Nature Mater. 8, 813–817 (2009).

    Article  CAS  Google Scholar 

  15. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  CAS  Google Scholar 

  16. Prins, F., Morabal-Capilla, M., Osorio, E. A., Coronado, E. & van der Zant, H. S. J. Room-temperature electrical addressing of a bistable spin-crossover molecular system. Adv. Mater. 23, 545–1549 (2011).

    Article  Google Scholar 

  17. Wagner, S. et al. Switching of a coupled spin pair in a single-molecule junction. Nature Nanotech. 8, 575–579 (2013).

    Article  CAS  Google Scholar 

  18. Kim, B. et al. Temperature and length dependence of charge transport in redox-active molecular wires incorporating Ruthenium(II) bis(σ-arylacetylide) complexes. J. Phys. Chem. C 111, 7521–7526 (2007).

    Article  CAS  Google Scholar 

  19. Luo, L. et al. Length and temperature dependent conduction of Ruthenium-containing redox-active molecular wires. J. Phys. Chem. C 115, 19955–19961 (2011).

    Article  CAS  Google Scholar 

  20. Ruben, M. et al. Charge transport through a cardan-joint molecule. Small 4, 2229–2235 (2008).

    Article  CAS  Google Scholar 

  21. Meng, F. et al. Photo-modulable molecular transport junctions based on organometallic molecular wires. Chem. Sci. 3, 3113–3118 (2012).

    Article  CAS  Google Scholar 

  22. Meng, F. et al. Orthogonally modulated molecular transport junctions for resettable electronic logic gates. Nature Commun. 5, 3023 (2014).

    Article  Google Scholar 

  23. Ponce, J. et al. Effect of metal complexation on the conductance of single-molecular wires measured at room temperature. J. Am. Chem. Soc. 136, 8314–8322 (2014).

    Article  CAS  Google Scholar 

  24. Schwarz, F. et al. High-conductive organometallic molecular wires with delocalized electron systems strongly coupled to metal electrodes. Nano Lett. 14, 5932–5940 (2014).

    Article  CAS  Google Scholar 

  25. Lissel, F. et al. Organometallic single-molecule electronics: Tuning electron transport through (diphosphine)2FeC4Fe(diphosphine)2 building blocks by varying the molecule–metal anchoring scheme from coordinative to covalent. J. Am. Chem. Soc. 136, 14560–14569 (2014).

    Article  CAS  Google Scholar 

  26. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    Article  CAS  Google Scholar 

  27. Zotti, L. A. et al. Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6, 1529–1535 (2010).

    Article  CAS  Google Scholar 

  28. Wuttke, E. et al. Divinylphenylene- and ethynylvinylphenylene-bridged mono-, di-, and triruthenium complexes for covalent binding to gold electrodes. Organometallics 33, 4672–4686 (2014).

    Article  CAS  Google Scholar 

  29. Touchard, D. et al. Vinylidene-, Alkynyl-, and trans-bis(alkynyl)ruthenium complexes. Crystal structure of trans-[Ru(NH3)(C C-Ph)(Ph2PCH2CH2PPh2)2]PF6 . Organometallics 16, 3640–3648 (1997).

    Article  CAS  Google Scholar 

  30. Lörtscher, E., Weber, H. B. & Riel, H. Statistical approach to investigating transport through single molecules. Phys. Rev. Lett. 98, 176807 (2007).

    Article  Google Scholar 

  31. Galperin, M., Ratner, M. & Nitzan, A. Hysteresis, switching, and negative differential resistance in molecular junctions: A polaron model. Nano Lett. 5, 125–130 (2005).

    Article  CAS  Google Scholar 

  32. Kuznetsov, A. M. Negative differential resistance and switching behavior of redox-mediated tunnel contact. J. Chem. Phys 127, 084710 (2007).

    Article  Google Scholar 

  33. Migliore, A. & Nitzan, A. Irreversibility and hysteresis in redox molecular conduction junctions. J. Am. Chem. Soc. 135, 9420–9432 (2013).

    Article  CAS  Google Scholar 

  34. Kastlunger, G. & Stadler, R. Charge localization on a redox-active single-molecule junction and its influence on coherent electron transport. Phys. Rev. B 88, 035418 (2013).

    Article  Google Scholar 

  35. Kastlunger, G. & Stadler, R. Density functional theory based calculations of the transfer integral in a redox-active single-molecule junction. Phys. Rev. B 89, 115412 (2014).

    Article  Google Scholar 

  36. Kastlunger, G. & Stadler, R. A density functional theory based direct comparison of coherent tunnelling and electron hopping in redox-active single molecule junctions. Phys. Rev. B 91, 125410 (2015).

    Article  Google Scholar 

  37. Brandbyge, M., Mozos, J.-L., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

  38. Xue, Y., Datta, S. & Ratner, M. A. First-principles based matrix Green's function approach to molecular electronic devices: General formalism. Chem. Phys. 281, 151–170 (2002).

    Article  CAS  Google Scholar 

  39. Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).

    Article  CAS  Google Scholar 

  40. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).

    Article  Google Scholar 

  41. Enkovaara, J. et al. Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys. 22, 253202 (2010).

    CAS  Google Scholar 

  42. Schmaus, S. et al. Giant magnetoresistance through a single molecule. Nature Nanotech. 6, 185–189 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Koch for support with the synthesis of the end groups and to O. Blacque for single-crystal X-ray diffraction. We also acknowledge G. Puebla-Hellmann, V. Schmidt, and F. Evers for scientific discussions, and M. Tschudy, U. Drechsler and Ch. Rettner for technical assistance. We thank W. Riess and B. Michel for continuous support. Funding from the National Research Program “Smart Materials” (NRP 62, grant 406240-126142) of the Swiss National Science Foundation (SNSF) and the University of Zürich is gratefully acknowledged. G.K. and R.S. are currently supported by the Austrian Science Fund FWF, project Nos. P22548 and P27272, and are deeply indebted to the Vienna Scientific Cluster VSC, on whose computing facilities all DFT calculations were performed (project No. 70174). In addition, G.K. receives a grant co-sponsored by the Austrian Academy of Science ÖAW, Springer and the Austrian Chemical Society GÖCH.

Author information

Authors and Affiliations

Authors

Contributions

F.L., C.E.-L., S.N.S., K.V., and H.B. designed and synthesized the compounds. F.S., and E.L. set up and performed the experiments and the data analysis. G.K. and R.S. carried out the calculations. F.S., G.K., K.V., H.B., R.S. and E.L. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Emanuel Lörtscher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2812 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarz, F., Kastlunger, G., Lissel, F. et al. Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. Nature Nanotech 11, 170–176 (2016). https://doi.org/10.1038/nnano.2015.255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing