Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Controlling upconversion nanocrystals for emerging applications

Abstract

Lanthanide-doped upconversion nanocrystals enable anti-Stokes emission with pump intensities several orders of magnitude lower than required by conventional nonlinear optical techniques. Their exceptional properties, namely large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, have led to a diversity of applications. Here, we review upconversion nanocrystals from the perspective of fundamental concepts and examine the technical challenges in relation to emission colour tuning and luminescence enhancement. In particular, we highlight the advances in functionalization strategies that enable the broad utility of upconversion nanocrystals for multimodal imaging, cancer therapy, volumetric displays and photonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lanthanide-doped nanoparticles and photon upconversion.
Figure 2: Selective milestones in multifunctionalization of upconversion nanoparticles for emerging applications.
Figure 3: Magnetism-coupling of upconversion nanocrystals through core–shell structuring for biomedical applications.
Figure 4: Main strategies for multifunctionalization of upconversion nanocrystals for diverse applications.

Similar content being viewed by others

References

  1. Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004).

    CAS  Google Scholar 

  2. Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    CAS  Google Scholar 

  3. Liu, X., Yan, C. & Capobianco, J. A. Photon upconversion nanomaterials. Chem. Soc. Rev. 44, 1299–1301 (2015).

    CAS  Google Scholar 

  4. Bloembergen, N. Solid state infrared quantum counters. Phys. Rev. Lett. 2, 84–85 (1959).

    CAS  Google Scholar 

  5. Ovsyakin, V. V. & Feofilov, P. P. Cooperative sensitization of luminescence in crystals activated with rare earth ions. JETP Lett. Engl. 4, 317–318 (1966).

    Google Scholar 

  6. Esterowitz, L., Nooman, J. & Bahler, J. Enhancement in a Ho3+−Yb3+ quantum counter by energy transfer. Appl. Phys. Lett. 10, 126–127 (1967).

    CAS  Google Scholar 

  7. Johnson, L. F. & Guggenheim, H. J. Infrared-pumped visible laser. Appl. Phys. Lett. 19, 44–47 (1971).

    CAS  Google Scholar 

  8. Bünzli, J. C. G. & Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005).

    Google Scholar 

  9. Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    CAS  Google Scholar 

  10. Yi, G. & Chow, G. Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341–343 (2007).

    CAS  Google Scholar 

  11. Wang, F., Wang, J. & Liu, X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. 49, 7456–7460 (2010).

    CAS  Google Scholar 

  12. Höppe, H. A. Recent developments in the field of inorganic phosphors. Angew. Chem. Int. Ed. 48, 3572–3582 (2009).

    Google Scholar 

  13. Sivakumar, S., van Veggel, F. C. J. M. & Raudsepp, M. Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles. J. Am. Chem. Soc. 127, 12464–12465 (2005).

    CAS  Google Scholar 

  14. Zhang, C. et al. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout. Adv. Mater. 22, 633–637 (2010).

    CAS  Google Scholar 

  15. Wang, F. et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nature Mater. 10, 968–973 (2011).

    Article  CAS  Google Scholar 

  16. Zou, W., Visser, C., Maduro, J. A., Pshenichnikov, M. S. & Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nature Photon. 6, 560–564 (2012).

    CAS  Google Scholar 

  17. Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nature Photon. 8, 32–36 (2013).

    Google Scholar 

  18. Wang, J. et al. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%. Nature Commun. 5, 5669 (2014).

    CAS  Google Scholar 

  19. Deng, R. et al. Temporal full-colour tuning through non-steady-state upconversion. Nature Nanotech. 10, 237–242 (2015).

    CAS  Google Scholar 

  20. Chan, E. M. Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications. Chem. Soc. Rev. 44, 1653–1679 (2015).

    CAS  Google Scholar 

  21. Liu, Y., Tu, D., Zhu, H. & Chen, X. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 42, 6924–6958 (2013).

    CAS  Google Scholar 

  22. Suyver, J. F. et al. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27, 1111–1130 (2005).

    CAS  Google Scholar 

  23. Dong, H., Sun, L.-D. & Yan, C.-H. Basic understanding of the lanthanide related upconversion emissions. Nanoscale 5, 5703–5714 (2013).

    CAS  Google Scholar 

  24. Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 4283–4374 (2009).

    CAS  Google Scholar 

  25. Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953).

    CAS  Google Scholar 

  26. Judd, B. R. Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750–761 (1962).

    CAS  Google Scholar 

  27. Ofelt, G. S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511–520 (1962).

    CAS  Google Scholar 

  28. Chan, E. M., Gargas, D. J., Schuck, P. J. & Milliron, D. J. Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals. J. Phys. Chem. B 116, 10561–10570 (2012).

    Article  CAS  Google Scholar 

  29. Fischer, S., Steinkemper, H., Löper, P., Hermle, M. & Goldschmidt, J. C. Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients. J. Appl. Phys. 111, 013109 (2012).

    Google Scholar 

  30. Dodson, C. M. & Zia, R. Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: calculated emission rates and oscillator strengths. Phys. Rev. B 86, 125102 (2012).

    Google Scholar 

  31. Wang, F. & Liu, X. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008).

    CAS  Google Scholar 

  32. Zhou, B., Tao, L., Tsang, Y. H. & Jin, W. Core–shell nanoarchitecture: a strategy to significantly enhance white-light upconversion of lanthanide-doped nanoparticles. J. Mater. Chem. C 1, 4313–4318 (2013).

    CAS  Google Scholar 

  33. Mahalingam, V. et al. Bright white upconversion emission from Tm3+/Yb3+/Er3+-doped Lu3Ga5O12 nanocrystals. J. Phys. Chem. C 112, 17745–17749 (2008).

    CAS  Google Scholar 

  34. Wang, H.-Q. & Nann, T. Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 3, 3804–3808 (2009).

    CAS  Google Scholar 

  35. Capobianco, J. A. et al. Optical spectroscopy of nanocrystalline cubic Y2O3:Er3+ obtained by combustion synthesis. Phys. Chem. Chem. Phys. 2, 3203–3207 (2000).

    CAS  Google Scholar 

  36. Wang, X., Kong, X., Yu, Y., Sun, Y. & Zhang, H. Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity. J. Phys. Chem. C 111, 15119–15124 (2007).

    CAS  Google Scholar 

  37. Dong, B. et al. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 24, 1987–1993 (2012).

    CAS  Google Scholar 

  38. Stouwdam, J. W. & van Veggel, F. C. J. M. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2, 733–737 (2002).

    CAS  Google Scholar 

  39. Zhai, X. et al. Sub-10 nm BaYF5:Yb3+, Er3+ core–shell nanoparticles with intense 1.53 μm fluorescence for polymer-based waveguide amplifiers. J. Mater. Chem. C 1, 1525–1530 (2013).

    CAS  Google Scholar 

  40. Wang, J., Wang, F., Wang, C., Liu, Z. & Liu, X. Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew. Chem. Int. Ed. 50, 10369–10372 (2011).

    CAS  Google Scholar 

  41. Heer, S., Kömpe, K., Güdel, H. U. & Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004).

    CAS  Google Scholar 

  42. Boyer, J.-C. & van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4:Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 1417–1419 (2010).

    CAS  Google Scholar 

  43. Vetrone, F., Naccache, R., Mahalingam, V., Morgan, C. G. & Capobianco, J. A. The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 19, 2924–2929 (2009).

    CAS  Google Scholar 

  44. Zhang, F. et al. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett. 12, 2852–2858 (2012).

    CAS  Google Scholar 

  45. Wang, Y.-F. et al. Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage. Chem. Eur. J. 18, 5558–5564 (2012).

    CAS  Google Scholar 

  46. Dong, C. et al. Cation exchange: a facile method to make NaYF4:Yb,Tm−NaGdF4 core−shell nanoparticles with a thin, tunable, and uniform shell. Chem. Mater. 24, 1297–1305 (2012).

    CAS  Google Scholar 

  47. Schietinger, S., Aichele, T., Wang, H.-Q., Nann, T. & Benson, O. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett. 10, 134–138 (2010).

    CAS  Google Scholar 

  48. Xing, H. et al. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 33, 1079–1089 (2012).

    CAS  Google Scholar 

  49. Sudheendra, L., Ortalan, V., Dey, S., Browning, N. D. & Kennedy, I. M. Plasmonic enhanced emissions from cubic NaYF4:Yb:Er/Tm nanophosphors. Chem. Mater. 23, 2987–2993 (2011).

    CAS  Google Scholar 

  50. Zhang, H. et al. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 122, 2927–2930 (2010).

    Google Scholar 

  51. Saboktakin, M. et al. Metal-enhanced upconversion luminescence tunable through metal nanoparticle nanophosphor separation. ACS Nano 6, 8758–8766 (2012).

    CAS  Google Scholar 

  52. Zhang, W., Ding, F. & Chou, S. Y. Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas. Adv. Mater. 24, OP236–OP241 (2012).

    CAS  Google Scholar 

  53. Huang, Q., Yu, J., Ma, E. & Lin, K. Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ tridoped NaYF4 . J. Phys. Chem. C 114, 4719–4724 (2010).

    CAS  Google Scholar 

  54. MacDougall, S. K. W., Ivaturi, A., Marques-Hueso, J., Krämer, K. W. & Richards, B. S. Ultra-high photoluminescent quantum yield of β-NaYF4:10% Er3+ via broadband excitation of upconversion for photovoltaic devices. Opt. Express 20, A879–A887 (2012).

    Google Scholar 

  55. Zhao, J. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nature Nanotech. 8, 729–734 (2013).

    CAS  Google Scholar 

  56. Wang, J. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nature Mater. 13, 157–162 (2013).

    Google Scholar 

  57. Zhang, J., Shade, C. M., Chengelis, D. A. & Petoud, S. A strategy to protect and sensitize near infrared luminescent Nd3+ and Yb3+: organic tropolonate ligands for the sensitization of Ln3+ doped NaYF4 nanocrystals. J. Am. Chem. Soc. 129, 14834–14835 (2007).

    CAS  Google Scholar 

  58. Mauser, N. et al. Tip enhancement of upconversion photoluminescence from rare earth ion doped nanocrystals. ACS Nano 9, 3617–3626 (2015).

    CAS  Google Scholar 

  59. Zhang, Y. & Liu, X. Shining a light on upconversion. Nature Nanotech. 8, 702–703 (2013).

    CAS  Google Scholar 

  60. Zhou, B., Lin, H. & Pun, E. Y.-B. Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 μm wavelength region. Opt. Express 18, 18805–18810 (2010).

    CAS  Google Scholar 

  61. Mai, H., Zhang, Y., Sun, L. & Yan, C. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals. J. Phys. Chem. C 111, 13721–13729 (2007).

    CAS  Google Scholar 

  62. Zhao, J. et al. Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size. Nanoscale 5, 944–952 (2013).

    CAS  Google Scholar 

  63. Xie, X. et al. Mechanistic investigation of photon upconversion in Nd3+-sensitized core−shell nanoparticles. J. Am. Chem. Soc. 135, 12608–12611 (2013).

    CAS  Google Scholar 

  64. Zijlmans, H. J. et al. Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal. Biochem. 267, 30–36 (1999).

    CAS  Google Scholar 

  65. Nyk, M., Kumar, R., Ohulchanskyy, T. Y., Bergey, E. J. & Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 8, 3834–3838 (2008).

    CAS  Google Scholar 

  66. Hampl, J. et al. Upconverting phosphor reporters in immunochromatographic assays. Anal. Biochem. 288, 176–187 (2001).

    CAS  Google Scholar 

  67. van de Rijke, F. et al. Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotechnol. 19, 273–276 (2001).

    CAS  Google Scholar 

  68. Wang, L. et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 44, 6054–6057 (2005).

    CAS  Google Scholar 

  69. Yang, Y., Velmurugan, B., Liu, X. & Xing, B. NIR photoresponsive crosslinked upconverting nanocarriers toward selective intracellular drug release. Small 9, 2937–2944 (2013).

    CAS  Google Scholar 

  70. Wang, C., Cheng, L. & Liu, Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32, 1110–1120 (2011).

    CAS  Google Scholar 

  71. Idris, N. M. et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Med. 18, 1580–1585 (2012).

    CAS  Google Scholar 

  72. Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009).

    CAS  Google Scholar 

  73. Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nature Nanotech. 9, 300–305 (2014).

    CAS  Google Scholar 

  74. Obregón, S., Kubacka, A., Fernández-García, M. & Colón, G. High-performance Er3+–TiO2 system: dual up-conversion and electronic role of the lanthanide. J. Catal. 299, 298–306 (2013).

    Google Scholar 

  75. Qin, W., Zhang, D., Zhao, D., Wang, L. & Zheng, K. Near-infrared photocatalysis based on YF3:Yb3+,Tm3+/TiO2 core/shell nanoparticles. Chem. Commun. 46, 2304–2306 (2010).

    CAS  Google Scholar 

  76. Chen, C. K., Chen, H. M., Chen, C.-J. & Liu, R.-S. Plasmon-enhanced near-infrared-active materials in photoelectrochemical water splitting. Chem. Commun. 49, 7917–7919 (2013).

    CAS  Google Scholar 

  77. Niu, W. et al. 3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse. Nanoscale 6, 817–824 (2013).

    Google Scholar 

  78. Zhu, H. et al. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanoparticles. ACS Nano 7, 11420–11426 (2013).

    CAS  Google Scholar 

  79. Wang, J. et al. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition. Angew. Chem. Int. Ed. 53, 1616–1620 (2014).

    CAS  Google Scholar 

  80. Meruga, J. M., Baride, A., Cross, W., Kellar, J. J. & May, P. S. Red-green-blue printing using luminescence-upconversion inks. J. Mater. Chem. C 2, 2221–2227 (2014).

    CAS  Google Scholar 

  81. van der Ende, B. M., Aarts, L. & Meijerink, A. Near-infrared quantum cutting for photovoltaics. Adv. Mater. 21, 3073–3077 (2009).

    CAS  Google Scholar 

  82. Jang, H. S., Woo, K. & Lim, K. Bright dual-mode green emission from selective set of dopant ions in β-Na(Y,Gd)F4:Yb,Er/β-NaGdF4:Ce,Tb core/shell nanocrystals. Opt. Express 20, 17107–17118 (2012).

    CAS  Google Scholar 

  83. Huang, X., Han, S., Huang, W. & Liu, X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42, 173–201 (2013).

    CAS  Google Scholar 

  84. van der Ende, B. M., Aarts, L. & Meijerink, A. Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11, 11081–11095 (2009).

    CAS  Google Scholar 

  85. Richards, B. S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol. Energ. Mater. Sol. Cells 90, 2329–2337 (2006).

    CAS  Google Scholar 

  86. Li, Z. Q. et al. Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells. Nanotechnology 23, 025402 (2012).

    CAS  Google Scholar 

  87. Liang, L. et al. Highly uniform, bifunctional core/double-shell-structured β-NaYF4:Er3+,Yb3+@SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells. Adv. Mater. 25, 2174–2180 (2013).

    CAS  Google Scholar 

  88. Gorris, H. H. & Wolfbeis, O. S. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. 52, 3584–3600 (2013).

    CAS  Google Scholar 

  89. Tu, D. et al. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew. Chem. Int. Ed. 50, 6306–6310 (2011).

    CAS  Google Scholar 

  90. Lu, Y. et al. On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays. Nature Commun. 5, 3741 (2014).

    CAS  Google Scholar 

  91. Savchuk, O. A. et al. Er:Yb:NaY2F5O up-converting nanoparticles for sub-tissue fluorescence lifetime thermal sensing. Nanoscale 6, 9727–9733 (2014).

    CAS  Google Scholar 

  92. Renero-Lecuna, C. et al. Origin of the high upconversion green luminescence efficiency in β-NaYF4:2%Er3+,20%Yb3+. Chem. Mater. 23, 3442–3448 (2011).

    CAS  Google Scholar 

  93. Liu, Y., Wang, D., Shi, J., Peng, Q. & Li, Y. Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals. Angew. Chem. Int. Ed. 52, 4366–4369 (2013).

    CAS  Google Scholar 

  94. Yang, Y. et al. Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials 34, 774–783 (2013).

    CAS  Google Scholar 

  95. Sun, Y., Peng, J., Feng, W. & Li, F. Upconversion nanophosphors NaLuF4:Yb,Tm for lymphatic imaging in vivo by real-time upconversion luminescence imaging under ambient light and high-resolution X-ray CT. Theranostics 3, 346–353 (2013).

    Google Scholar 

  96. Ye, X. et al. Competition of shape and interaction patchiness for self-assembling nanoplates. Nature Chem. 5, 466–473 (2013).

    CAS  Google Scholar 

  97. Zhang, Y. et al. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 136, 4893–4896 (2014).

    CAS  Google Scholar 

  98. Lee, J. et al. Universal process-inert encoding architecture for polymer microparticles. Nature Mater. 13, 524–529 (2014).

    CAS  Google Scholar 

  99. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    CAS  Google Scholar 

  100. Kumar, R., Nyk, M., Ohulchanskyy, T. Y., Flask, C. A. & Prasad, P. N. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater. 19, 853–859 (2009).

    CAS  Google Scholar 

  101. Li, Z., Zhang, Y. & Jiang, S. Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765–4769 (2008).

    CAS  Google Scholar 

  102. Li, L., Wu, P., Hwang, K. & Lu, Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 135, 2411–2414 (2013).

    CAS  Google Scholar 

  103. Xu, H. et al. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32, 9364–9373 (2011).

    CAS  Google Scholar 

  104. Lu, G. et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature Chem. 4, 310–316 (2012).

    CAS  Google Scholar 

  105. Chen, Z. et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 130, 3023–3029 (2008).

    CAS  Google Scholar 

  106. Zhou, J., Yao, L., Li, C. & Li, F. A versatile fabrication of upconversion nanophosphors with functional-surface tunable ligands. J. Mater. Chem. 20, 8078–8085 (2010).

    CAS  Google Scholar 

  107. Iwan, S. et al. Green electroluminescence from an n-ZnO:Er/p-Si heterostructured light-emitting diode. Physica B 407, 2721–2724 (2012).

    CAS  Google Scholar 

  108. Zhang, Y., Das, G. K., Xu, R. & Tan, T. T. Y. Tb-doped iron oxide: bifunctional fluorescent and magnetic nanocrystals. J. Mater. Chem. 19, 3696–3703 (2009).

    CAS  Google Scholar 

  109. Sharma, S., Shah, J., Kotnala, R. K. & Chawla, S. Red upconversion luminescence and paramagnetism in Er/Yb doped SnO2 . Electron. Mater. Lett. 9, 615–620 (2013).

    CAS  Google Scholar 

  110. Bol, A. A., van Beek, R. & Meijerink, A. On the incorporation of trivalent rare earth ions in II–VI semiconductor nanocrystals. Chem. Mater. 14, 1121–1126 (2002).

    CAS  Google Scholar 

  111. Na, H. B., Song, I. C. & Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21, 2133–2148 (2009).

    CAS  Google Scholar 

  112. Zeng, J. et al. Anchoring group effects of surface ligand on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents. Adv. Mater. 26, 2694–2698 (2014).

    CAS  Google Scholar 

  113. Xia, A. et al. Core–shell NaYF4:Yb3+,Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 32, 7200–7208 (2011).

    CAS  Google Scholar 

  114. Zhang, F. et al. Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett. 12, 61–67 (2012).

    CAS  Google Scholar 

  115. Hu, D., Chen, M., Gao, Y., Li, F. & Wu, L. A facile method to synthesize superparamagnetic and up-conversion luminescent NaYF4:Yb,Er/Tm@SiO2@Fe3O4 nanocomposite particles and their bioapplication. J. Mater. Chem. 21, 11276–11282 (2011).

    CAS  Google Scholar 

  116. Zhu, X. et al. Core–shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33, 4618–4627 (2012).

    CAS  Google Scholar 

  117. Zhai, Y., Zhu, C., Ren, J., Wang, E. & Dong, S. Multifunctional polyoxometalates-modified upconversion nanoparticles: integration of electrochromic devices and antioxidants detection. Chem. Commun. 49, 2400–2402 (2013).

    CAS  Google Scholar 

  118. Zhang, F. et al. Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 132, 2850–2851 (2010).

    CAS  Google Scholar 

  119. Atre, A. C., García-Etxarri, A., Alaeian, H. & Dionne, J. A. Toward high-efficiency solar upconversion with plasmonic nanostructures. J. Opt. 14, 024008 (2012).

    Google Scholar 

  120. Cheng, L. et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. 50, 7385–7390 (2011).

    CAS  Google Scholar 

  121. Peng, J. et al. High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J. Am. Chem. Soc. 137, 2336–2342 (2015).

    CAS  Google Scholar 

  122. Tang, Y., Di, W., Zhai, X., Yang, R. & Qin, W. NIR-responsive photocatalytic activity and mechanism of NaYF4:Yb,Tm@TiO2 core−shell nanoparticles. ACS Catal. 3, 405–412 (2013).

    CAS  Google Scholar 

  123. Li, C., Wang, F., Zhu, J. & Yu, J. C. NaYF4:Yb,Tm/CdS composite as a novel near-infrared-driven photocatalyst. Appl. Catal. B Environ. 100, 433–439 (2010).

    CAS  Google Scholar 

  124. Zhang, J. et al. An upconversion NaYF4:Yb3+,Er3+/TiO2 core–shell nanoparticle photoelectrode for improved efficiencies of dye-sensitized solar cells. J. Power Sources 226, 47–53 (2013).

    CAS  Google Scholar 

  125. Shen, J., Sun, L.-D., Zhang, Y.-W. & Yan, C.-H. Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy. Chem. Commun. 46, 5731–5733 (2010).

    CAS  Google Scholar 

  126. Yan, C. et al. Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er nanoheterostructures. J. Am. Chem. Soc. 132, 8868–8869 (2010).

    CAS  Google Scholar 

  127. Li, Z., Wang, L., Wang, Z., Liu, X. & Xiong, Y. Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions. J. Phys. Chem. C 115, 3291–3296 (2011).

    CAS  Google Scholar 

  128. Debasu, M. L. et al. All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation. Adv. Mater. 25, 4868–4874 (2013).

    CAS  Google Scholar 

  129. Yin, M., Wu, L., Li, Z., Ren, J. & Qu, X. Facile in situ fabrication of graphene-upconversion hybrid materials with amplified electrogenerated chemiluminescence. Nanoscale 4, 400–404 (2012).

    CAS  Google Scholar 

  130. Tao, L. et al. Fabrication of covalently functionalized graphene oxide incorporated solid-state hybrid silica gel glasses and their improved nonlinear optical response. J. Phys. Chem. C 117, 23108–23116 (2013).

    CAS  Google Scholar 

  131. He, T. et al. Mechanism studies on the superior optical limiting observed in graphene oxide covalently functionalized with upconversion NaYF4:Yb3+/Er3+ nanoparticles. Small 8, 2163–2168 (2012).

    CAS  Google Scholar 

  132. Deng, R., Xie, X., Vendrell, M., Chang, Y.-T. & Liu, X. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc. 133, 20168–20171 (2011).

    CAS  Google Scholar 

  133. Heer, S., Lehmann, O., Haase, M. & Güdel, H.-U. Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed. 42, 3179–3182 (2003).

    CAS  Google Scholar 

  134. Huang, P. et al. Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew. Chem. Int. Ed. 53, 1252–1257 (2014).

    CAS  Google Scholar 

  135. Li, H. et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49, 4430–4434 (2010).

    CAS  Google Scholar 

  136. Deutsch, Z., Neeman, L. & Oron, D. Luminescence upconversion in colloidal double quantum dots. Nature Nanotech. 8, 649–653 (2013).

    CAS  Google Scholar 

  137. Gan, Z., Wu, X., Zhou, G., Shen, J. & Chu, P. K. Is there real upconversion photoluminescence from graphene quantum dots? Adv. Opt. Mater. 1, 554–558 (2013).

    Google Scholar 

  138. Gnach, A., Lipinski, T., Bednarkiewicz, A., Rybka, J. & Capobianco, J. A. Upconverting nanoparticles: assessing the toxicity. Chem. Soc. Rev. 44, 1561–1584 (2015).

    CAS  Google Scholar 

  139. Li, R. et al. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. ACS Nano 8, 1771–1783 (2014).

    CAS  Google Scholar 

  140. Prorok, K. et al. The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+,Yb3+ codoped colloidal α-NaYF4 core–shell nanoparticles. Nanoscale 6, 1855–1864 (2014).

    CAS  Google Scholar 

  141. Lahoz, F., Martín, I. R. & Alonso, D. Theoretical analysis of the photon avalanche dynamics in Ho3+-Yb3+ codoped systems under near-infrared excitation. Phys. Rev. B 71, 045115 (2005).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support through the Agency for Science, Technology and Research (A*STAR) (grant nos 122-PSE-0014 and 1231AFG028), the National Research Foundation and the Economic Development Board (Singapore-Peking-Oxford Research Enterprise), the National Natural Science Foundation of China (grant no. R-2014-S-009) through the NUS Research Institute at Suzhou, and the Australian Research Council (Centre of Excellence for Nanoscale BioPhotonics, grant no. CE140100003, and Future Fellowship, grant no. FT 130100517).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dayong Jin or Xiaogang Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Shi, B., Jin, D. et al. Controlling upconversion nanocrystals for emerging applications. Nature Nanotech 10, 924–936 (2015). https://doi.org/10.1038/nnano.2015.251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing