Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum emission from hexagonal boron nitride monolayers

Abstract

Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology1,2. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond3 and silicon carbide4, nanocrystal quantum dots5,6,7, and most recently in carbon nanotubes8. Single-photon emission from two-dimensional materials has been reported9,10,11,12, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structural characterization of hBN.
Figure 2: Optical characterization of single-photon emitters in hBN.
Figure 3: Photophysical properties of single-photon emitters in hBN multilayers.
Figure 4: Proposed defect models in the hBN lattice.

References

  1. O'Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    CAS  Article  Google Scholar 

  2. Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    CAS  Article  Google Scholar 

  3. Aharonovich, I. & Neu, E. Diamond nanophotonics. Adv. Opt. Mater. 911–928 (2014).

  4. Castelletto, S. et al. A silicon carbide room-temperature single-photon source. Nature Mater. 13, 151–156 (2014).

    CAS  Article  Google Scholar 

  5. Mangum, B. D. et al. Competition between Auger recombination and hot-carrier trapping in PL intensity fluctuations of type II nanocrystals. Small 10, 2892–2901 (2014).

    CAS  Article  Google Scholar 

  6. Pisanello, F. et al. Non-blinking single-photon generation with anisotropic colloidal nanocrystals: towards room-temperature, efficient, colloidal quantum sources. Adv. Mater. 25, 1974–1980 (2013).

    CAS  Article  Google Scholar 

  7. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    CAS  Article  Google Scholar 

  8. Ma, X., Hartmann, N. F., Baldwin, J. K., Doorn, S. K. & Htoon, H. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nature Nanotech. 10, 671–675 (2015).

    CAS  Article  Google Scholar 

  9. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nature Nanotech. 10, 507–511 (2015).

    CAS  Article  Google Scholar 

  10. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nature Nanotech. 10, 497–502 (2015).

    CAS  Article  Google Scholar 

  11. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nature Nanotech. 10, 503–506 (2015).

    CAS  Article  Google Scholar 

  12. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2 . Nature Nanotech. 10, 491–496 (2015).

    CAS  Article  Google Scholar 

  13. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  14. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  15. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    CAS  Article  Google Scholar 

  16. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nature Commun. 5, 5221 (2014).

    CAS  Article  Google Scholar 

  17. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    CAS  Article  Google Scholar 

  18. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    CAS  Article  Google Scholar 

  19. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    CAS  Article  Google Scholar 

  20. Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).

    CAS  Article  Google Scholar 

  21. Park, J.-H. et al. Large-area monolayer hexagonal boron nitride on Pt foil. ACS Nano 8, 8520–8528 (2014).

    CAS  Article  Google Scholar 

  22. Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).

    CAS  Article  Google Scholar 

  23. Shi, Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134–4139 (2010).

    CAS  Article  Google Scholar 

  24. Khan, M. H. et al. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper. Sci. Rep. 5, 7743 (2015).

    CAS  Article  Google Scholar 

  25. Gorbachev, R. V. et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011).

    CAS  Article  Google Scholar 

  26. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nature Photon. 8, 899–907 (2014).

    CAS  Article  Google Scholar 

  27. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater. 3, 404–409 (2004).

    CAS  Article  Google Scholar 

  28. Vialla, F. et al. Unifying the low-temperature photoluminescence spectra of carbon nanotubes: the role of acoustic phonon confinement. Phys. Rev. Lett. 113, 057402 (2014).

    CAS  Article  Google Scholar 

  29. Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

    CAS  Article  Google Scholar 

  30. Elke, N. et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13, 025012 (2011).

    Article  Google Scholar 

  31. Aharonovich, I. et al. Two-level ultrabright single photon emission from diamond nanocrystals. Nano Lett. 9, 3191–3195 (2009).

    CAS  Article  Google Scholar 

  32. Schietinger, S., Barth, M., Aichele, T. & Benson, O. Plasmon-enhanced single photon emission from a nanoassembled metal–diamond hybrid structure at room temperature. Nano Lett. 9, 1694–1698 (2009).

    CAS  Article  Google Scholar 

  33. Orellana, W. & Chacham, H. Stability of native defects in hexagonal and cubic boron nitride. Phys. Rev. B 63, 125205 (2001).

    Article  Google Scholar 

  34. Attaccalite, C., Bockstedte, M., Marini, A., Rubio, A. & Wirtz, L. Coupling of excitons and defect states in boron-nitride nanostructures. Phys. Rev. B 83, 144115 (2011).

    Article  Google Scholar 

  35. Jin, C., Lin, F., Suenaga, K. & Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505 (2009).

    Article  Google Scholar 

  36. Kresse, G. & Hafner, J. Efficient iterative schemes for ab-initio total energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Article  Google Scholar 

  37. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Lifshitz, T. Babinec and A. Magyar for discussions, and J. Fang for assistance with TEM images. The work was supported in part by the Australian Research Council (project no. DP140102721), FEI Company and by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. I.A. is the recipient of an Australian Research Council Discovery Early Career Research Award (project no. DE130100592).

Author information

Authors and Affiliations

Authors

Contributions

T.T.T., I.A. and M.T. conceived and designed the experiments. T.T.T. performed the experiments and analysed the data. M.J.F. conducted the DFT simulation. K.B. assisted with the optical measurements. T.T.T., I.A., M.T. and M.J.F. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Milos Toth or Igor Aharonovich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4265 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tran, T., Bray, K., Ford, M. et al. Quantum emission from hexagonal boron nitride monolayers. Nature Nanotech 11, 37–41 (2016). https://doi.org/10.1038/nnano.2015.242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.242

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research