Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy

Abstract

Strep-Tactin, an engineered form of streptavidin, binds avidly to the genetically encoded peptide Strep-tag II in a manner comparable to streptavidin binding to biotin. These interactions have been used in protein purification and detection applications. However, in single-molecule studies, for example using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), the tetravalency of these systems impedes the measurement of monodispersed data. Here, we introduce a monovalent form of Strep-Tactin that harbours a unique binding site for Strep-tag II and a single cysteine that allows Strep-Tactin to specifically attach to the atomic force microscope cantilever and form a consistent pulling geometry to obtain homogeneous rupture data. Using AFM-SMFS, the mechanical properties of the interaction between Strep-tag II and monovalent Strep-Tactin were characterized. Rupture forces comparable to biotin:streptavidin unbinding were observed. Using titin kinase and green fluorescent protein, we show that monovalent Strep-Tactin is generally applicable to protein unfolding experiments. We expect monovalent Strep-Tactin to be a reliable anchoring tool for a range of single-molecule studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of monoST based on the crystal structures of SA and ST.
Figure 2: ITC measurements of ST constructs and SII peptide.
Figure 3: Characterization of SII:monoST as a general handhold system in AFM-based SMFS.
Figure 4: Comparison of SII:monoST unbinding forces depending on the placement of SII on the termini of the probed protein.

Similar content being viewed by others

References

  1. Eakin, R. E., McKinley, W. A. & Williams, R. J. Egg-white injury in chicks and its relationship to a deficiency of vitamin H (biotin). Science 92, 224–225 (1940).

    Article  CAS  Google Scholar 

  2. Gyorgy, P. & Rose, C. S. Cure of egg-white injury in rats by the ‘toxic’ fraction (avidin) of egg white given parenterally. Science 94, 261–262 (1941).

    Article  CAS  Google Scholar 

  3. Tausig, F. & Wolf, F. J. Streptavidin—a substance with avidin-like properties produced by microorganisms. Biochem. Biophys. Res. Commun. 14, 205–209 (1964).

    Article  CAS  Google Scholar 

  4. Bayer, E. A., Skutelsky, E., Wynne, D. & Wilchek, M. Preparation of ferritin–avidin conjugates by reductive alkylation for use in electron microscopic cytochemistry. J. Histochem. Cytochem. 24, 933–939 (1976).

    Article  CAS  Google Scholar 

  5. Heggeness, M. H. & Ash, J. F. Use of the avidin–biotin complex for the localization of actin and myosin with fluorescence microscopy. J. Cell Biol. 73, 783–788 (1977).

    Article  CAS  Google Scholar 

  6. Bayer, E. A., Zalis, M. G. & Wilchek, M. 3-(N-maleimido-propionyl)biocytin: a versatile thiol-specific biotinylating reagent. Anal. Biochem. 149, 529–536 (1985).

    Article  CAS  Google Scholar 

  7. Schatz, P. J. Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Nature Biotechnol. 11, 1138–1143 (1993).

    Article  CAS  Google Scholar 

  8. Beckett, D., Kovaleva, E. & Schatz, P. J. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929 (1999).

    Article  CAS  Google Scholar 

  9. Moy, V. T., Florin, E. L. & Gaub, H. E. Intermolecular forces and energies between ligands and receptors. Science 266, 257–259 (1994).

    Article  CAS  Google Scholar 

  10. Florin, E. L., Moy, V. T. & Gaub, H. E. Adhesion forces between individual ligand–receptor pairs. Science 264, 415–417 (1994).

    Article  CAS  Google Scholar 

  11. Voss, S. & Skerra, A. Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng. 10, 975–982 (1997).

    Article  CAS  Google Scholar 

  12. Schmidt, T. G., Koepke, J., Frank, R. & Skerra, A. Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J. Mol. Biol. 255, 753–766 (1996).

    Article  CAS  Google Scholar 

  13. Schmidt, T. G. & Skerra, A. The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nature Protoc. 2, 1528–1535 (2007).

    Article  CAS  Google Scholar 

  14. Nampally, M., Moerschbacher, B. M. & Kolkenbrock, S. Fusion of a novel genetically engineered chitosan affinity protein and green fluorescent protein for specific detection of chitosan in vitro and in situ. Appl. Environ. Microbiol. 78, 3114–3119 (2012).

    Article  CAS  Google Scholar 

  15. Knabel, M. et al. Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nature Med. 8, 631–637 (2002).

    Article  CAS  Google Scholar 

  16. Moosmeier, M. A. et al. Transtactin: a universal transmembrane delivery system for Strep-tag II-fused cargos. J. Cell. Mol. Med. 14, 1935–1945 (2010).

    Article  CAS  Google Scholar 

  17. Lim, K. H., Huang, H., Pralle, A. & Park, S. Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnol. Bioeng. 110, 57–67 (2013).

    Article  CAS  Google Scholar 

  18. Howarth, M. et al. A monovalent streptavidin with a single femtomolar biotin binding site. Nature Methods 3, 267–273 (2006).

    Article  CAS  Google Scholar 

  19. Lau, P. W. et al. The molecular architecture of human Dicer. Nature Struct. Mol. Biol. 19, 436–440 (2012).

    Article  CAS  Google Scholar 

  20. Sauerwald, A. et al. Structure of active dimeric human telomerase. Nature Struct. Mol. Biol. 20, 454–460 (2013).

    Article  CAS  Google Scholar 

  21. Howarth, M. et al. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nature Methods 5, 397–399 (2008).

    Article  CAS  Google Scholar 

  22. Carlsen, A. T., Zahid, O. K., Ruzicka, J. A., Taylor, E. W. & Hall, A. R. Selective detection and quantification of modified DNA with solid-state nanopores. Nano Lett. 14, 5488–5492 (2014).

    Article  CAS  Google Scholar 

  23. Sonntag, M. H., Ibach, J., Nieto, L., Verveer, P. J. & Brunsveld, L. Site-specific protection and dual labeling of human epidermal growth factor (hEGF) for targeting, imaging, and cargo delivery. Chemistry 20, 6019–6026 (2014).

    Article  CAS  Google Scholar 

  24. Xie, J. et al. Photocrosslinkable pMHC monomers stain T cells specifically and cause ligand-bound TCRs to be ‘preferentially’ transported to the cSMAC. Nature Immunol. 13, 674–680 (2012).

    Article  CAS  Google Scholar 

  25. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  CAS  Google Scholar 

  26. Kim, M., Wang, C. C., Benedetti, F. & Marszalek, P. E. A nanoscale force probe for gauging intermolecular interactions. Angew. Chem. Int. Ed. 51, 1903–1906 (2012).

    Article  CAS  Google Scholar 

  27. Chilkoti, A., Boland, T., Ratner, B. D. & Stayton, P. S. The relationship between ligand-binding thermodynamics and protein–ligand interaction forces measured by atomic force microscopy. Biophys. J. 69, 2125–2130 (1995).

    Article  CAS  Google Scholar 

  28. Tang, J. et al. Recognition imaging and highly ordered molecular templating of bacterial S-layer nanoarrays containing affinity-tags. Nano Lett. 8, 4312–4319 (2008).

    Article  CAS  Google Scholar 

  29. Puchner, E. M. et al. Mechanoenzymatics of titin kinase. Proc. Natl Acad. Sci. USA 105, 13385–13390 (2008).

    Article  CAS  Google Scholar 

  30. Li, Y. D., Lamour, G., Gsponer, J., Zheng, P. & Li, H. The molecular mechanism underlying mechanical anisotropy of the protein GB1. Biophys. J. 103, 2361–2368 (2012).

    Article  CAS  Google Scholar 

  31. Zocher, M. et al. Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding, stability, and interactions of native membrane proteins. ACS Nano 6, 961–971 (2012).

    Article  CAS  Google Scholar 

  32. Schmidt, T. G. et al. Development of the twin-Strep-tag(R) and its application for purification of recombinant proteins from cell culture supernatants. Prot. Expr. Purif. 92, 54–61 (2013).

    Article  CAS  Google Scholar 

  33. Moayed, F., Mashaghi, A. & Tans, S. J. A polypeptide–DNA hybrid with selective linking capability applied to single molecule nano-mechanical measurements using optical tweezers. PLoS ONE 8, e54440 (2013).

    Article  CAS  Google Scholar 

  34. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  CAS  Google Scholar 

  35. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  CAS  Google Scholar 

  36. Moosmeier, M. A., Bulkescher, J., Hoppe-Seyler, K. & Hoppe-Seyler, F. Binding proteins internalized by PTD-fused ligands allow the intracellular sequestration of selected targets by ligand exchange. Int. J. Mol. Med. 25, 557–564 (2010).

    Article  CAS  Google Scholar 

  37. Kim, M. et al. Nanomechanics of streptavidin hubs for molecular materials. Adv. Mater. 23, 5684–5688 (2011).

    Article  CAS  Google Scholar 

  38. Korndorfer, I. P. & Skerra, A. Improved affinity of engineered streptavidin for the Strep-tag II peptide is due to a fixed open conformation of the lid-like loop at the binding site. Protein Sci. 11, 883–893 (2002).

    Article  CAS  Google Scholar 

  39. Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. & Salemme, F. R. Structural origins of high-affinity biotin binding to streptavidin. Science 243, 85–88 (1989).

    Article  CAS  Google Scholar 

  40. Chivers, C. E. et al. A streptavidin variant with slower biotin dissociation and increased mechanostability. Nature Methods 7, 391–U376 (2010).

    Article  CAS  Google Scholar 

  41. Malmstadt, N., Hyre, D. E., Ding, Z., Hoffman, A. S. & Stayton, P. S. Affinity thermoprecipitation and recovery of biotinylated biomolecules via a mutant streptavidin-smart polymer conjugate. Bioconjug. Chem. 14, 575–580 (2003).

    Article  CAS  Google Scholar 

  42. Pippig, D. A., Baumann, F., Strackharn, M., Aschenbrenner, D. & Gaub, H. E. Protein–DNA chimeras for nano assembly. ACS Nano 8, 6551–6555 (2014).

    Article  CAS  Google Scholar 

  43. Schmidt, T. G. & Skerra, A. One-step affinity purification of bacterially produced proteins by means of the ‘Strep tag’ and immobilized recombinant core streptavidin. J. Chromatogr. A 676, 337–345 (1994).

    Article  CAS  Google Scholar 

  44. Jain, A., Liu, R., Xiang, Y. K. & Ha, T. Single-molecule pull-down for studying protein interactions. Nature Protoc. 7, 445–452 (2012).

    Article  CAS  Google Scholar 

  45. Celik, E. & Moy, V. T. Nonspecific interactions in AFM force spectroscopy measurements. J. Mol. Recogn. 25, 53–56 (2012).

    Article  CAS  Google Scholar 

  46. Limmer, K., Pippig, D. A., Aschenbrenner, D. & Gaub, H. E. A force-based, parallel assay for the quantification of protein–DNA interactions. PLoS ONE 9, e89626 (2014).

    Article  Google Scholar 

  47. Otten, M. et al. From genes to protein mechanics on a chip. Nature Methods 11, 1127–1130 (2014).

    Article  CAS  Google Scholar 

  48. Beckmann, A. et al. A fast recoiling silk-like elastomer facilitates nanosecond nematocyst discharge. BMC Biol. 13, 3 (2015).

    Article  Google Scholar 

  49. Zimmermann, J. L., Nicolaus, T., Neuert, G. & Blank, K. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nature Protoc. 5, 975–985 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (Cellufuel, Advanced Grant 294438) and the German Research Foundation (SFB1032-A01). The authors thank M. Gautel for providing the titin kinase construct, IBA for providing unmodified Strep-Tactin, M.A. Jobst for AFM software implementation, W. Ott for discussions, S.W. Stahl and A. Zeder for initial tests with Strep-Tactin in AFM force spectroscopy, K. Erlich for proof reading and A. Kardinal and T. Nicolaus for laboratory support.

Author information

Authors and Affiliations

Authors

Contributions

H.E.G. and D.A.P. conceived the idea and designed the experiments. Experiments were carried out and evaluated by F.B., M.S.B. and D.A.P. L.F.M. provided force spectroscopy evaluation software and advice. A.A. prepared TK. D.A.P. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Diana A. Pippig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3568 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumann, F., Bauer, M., Milles, L. et al. Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy. Nature Nanotech 11, 89–94 (2016). https://doi.org/10.1038/nnano.2015.231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing