Abstract

Two-dimensional crystals such as graphene and transition-metal dichalcogenides1 demonstrate a range of unique and complementary optoelectronic properties2,3. Assembling different two-dimensional materials in vertical heterostructures4 enables the combination of these properties in one device, thus creating multifunctional optoelectronic systems with superior performance. Here, we demonstrate that graphene/WSe2/graphene heterostructures ally the high photodetection efficiency of transition-metal dichalcogenides5,6 with a picosecond photoresponse comparable to that of graphene7,8,9, thereby optimizing both speed and efficiency in a single photodetector. We follow the extraction of photoexcited carriers in these devices using time-resolved photocurrent measurements and demonstrate a photoresponse time as short as 5.5 ps, which we tune by applying a bias and by varying the transition-metal dichalcogenide layer thickness. Our study provides direct insight into the physical processes governing the detection speed and quantum efficiency of these van der Waals heterostuctures, such as out-of-plane carrier drift and recombination. The observation and understanding of ultrafast and efficient photodetection demonstrate the potential of hybrid transition-metal dichalcogenide-based heterostructures as a platform for future optoelectronic devices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  2. 2.

    , , , & Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

  3. 3.

    , , & Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

  4. 4.

    & Van der Waals heterostructures. Nature 499, 419–425 (2013).

  5. 5.

    et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

  6. 6.

    et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952–958 (2013).

  7. 7.

    , & Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

  8. 8.

    et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech. 9, 780–793 (2014).

  9. 9.

    et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photon. 1, 781–784 (2014).

  10. 10.

    & Two-dimensional crystals: managing light for optoelectronics. ACS Nano 7, 5660–5665 (2013).

  11. 11.

    , , & Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 14, 6165–6170 (2014).

  12. 12.

    et al. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep. 4, 6608 (2014).

  13. 13.

    et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014).

  14. 14.

    , , , & Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotech. 8, 497–501 (2013).

  15. 15.

    et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotech. 9, 268–272 (2014).

  16. 16.

    , , & Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photon. 9, 1–6 (2015).

  17. 17.

    et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

  18. 18.

    , & Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 88, 115205 (2013).

  19. 19.

    , , & Transient absorption microscopy of monolayer and bulk WSe2. ACS Nano 8, 2970–2976 (2014).

  20. 20.

    et al. Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures. Nature Commun. 5, 5622 (2014).

  21. 21.

    et al. Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation. Phys. Rev. B 90, 155449 (2014).

  22. 22.

    et al. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2. ACS Nano 8, 10931–10940 (2014).

  23. 23.

    et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013).

  24. 24.

    , & High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenide MoS2. Phys. Rev. B 90, 245402 (2014).

  25. 25.

    et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625–5629 (2014).

  26. 26.

    , & Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Lett. 15, 339–345 (2014).

  27. 27.

    et al. Charge photogeneration in few-layer MoS2. Adv. Funct. Mater. 25, 3351–3358 (2015).

  28. 28.

    et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

  29. 29.

    , , & Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube p–i–n photodiodes. Phys. Rev. Lett. 108, 087404 (2012).

  30. 30.

    et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).

  31. 31.

    & The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

  32. 32.

    , & Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J. Phys. C 5, 3540–3551 (1972).

  33. 33.

    et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7, 9260–9267 (2013).

  34. 34.

    et al. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nature Commun. 6, 7509 (2015).

  35. 35.

    Electronic mobility anisotropy of layered semiconductors: transversal photoconductivity measurements at n-MoSe2. J. Phys. C 15, L519–L525 (1982).

  36. 36.

    & Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys. 129, 054703 (2008).

Download references

Acknowledgements

The authors thank Q. Ma and P. Jarillo-Herrero for their instruction on the layer assembly technique, and M. Lundeberg for discussions. M.M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (PGSD3-426325-2012). F.V. acknowledges financial support from Marie-Curie International Fellowship COFUND and the ICFOnest programme. F.K. acknowledges support by Fundacio Cellex Barcelona, the ERC Career integration grant (294056, GRANOP), the ERC starting grant (307806, CarbonLight), the Mineco grants RYC-2012-12281 and FIS2013-47161-P, and support by the EC under the Graphene Flagship (contract no. CNECT-ICT-604391). P.S. acknowledges financial support from a scholarship from the ‘la Caixa’ Banking Foundation.

Author information

Affiliations

  1. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

    • M. Massicotte
    • , P. Schmidt
    • , F. Vialla
    • , K. G. Schädler
    • , A. Reserbat-Plantey
    • , K. J. Tielrooij
    •  & F. H. L. Koppens
  2. National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

    • K. Watanabe
    •  & T. Taniguchi

Authors

  1. Search for M. Massicotte in:

  2. Search for P. Schmidt in:

  3. Search for F. Vialla in:

  4. Search for K. G. Schädler in:

  5. Search for A. Reserbat-Plantey in:

  6. Search for K. Watanabe in:

  7. Search for T. Taniguchi in:

  8. Search for K. J. Tielrooij in:

  9. Search for F. H. L. Koppens in:

Contributions

M.M. and F.H.L.K. conceived and designed the experiments. M.M., P.S. and F.V. fabricated the samples, carried out the experiments and performed the data analysis. K.W. and T.T. provided boron nitride crystals. K.G.S. and A.R.P. provided assistance for the photoluminescence measurements. M.M., F.V., K.J.T., P.S. and F.H.L.K co-wrote the manuscript, with the participation of K.G.S. and A.R.P.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to F. H. L. Koppens.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2015.227

Further reading