Abstract
Two-dimensional crystals such as graphene and transition-metal dichalcogenides1 demonstrate a range of unique and complementary optoelectronic properties2,3. Assembling different two-dimensional materials in vertical heterostructures4 enables the combination of these properties in one device, thus creating multifunctional optoelectronic systems with superior performance. Here, we demonstrate that graphene/WSe2/graphene heterostructures ally the high photodetection efficiency of transition-metal dichalcogenides5,6 with a picosecond photoresponse comparable to that of graphene7,8,9, thereby optimizing both speed and efficiency in a single photodetector. We follow the extraction of photoexcited carriers in these devices using time-resolved photocurrent measurements and demonstrate a photoresponse time as short as 5.5 ps, which we tune by applying a bias and by varying the transition-metal dichalcogenide layer thickness. Our study provides direct insight into the physical processes governing the detection speed and quantum efficiency of these van der Waals heterostuctures, such as out-of-plane carrier drift and recombination. The observation and understanding of ultrafast and efficient photodetection demonstrate the potential of hybrid transition-metal dichalcogenide-based heterostructures as a platform for future optoelectronic devices.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Large in-plane vibrational and optical anisotropy in natural 2D heterostructure abramovite
Scientific Reports Open Access 07 October 2022
-
Natural 2D layered mineral cannizzarite with anisotropic optical responses
Scientific Reports Open Access 15 June 2022
-
Effect of crystallinity and thickness on thermal transport in layered PtSe2
npj 2D Materials and Applications Open Access 23 May 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).
Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952–958 (2013).
Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).
Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech. 9, 780–793 (2014).
Schall, D. et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photon. 1, 781–784 (2014).
Eda, G. & Maier, S. A. Two-dimensional crystals: managing light for optoelectronics. ACS Nano 7, 5660–5665 (2013).
Furchi, M. M., Polyushkin, D. K., Pospischil, A. & Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2 . Nano Lett. 14, 6165–6170 (2014).
Klots, A. R. et al. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep. 4, 6608 (2014).
Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014).
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotech. 8, 497–501 (2013).
Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotech. 9, 268–272 (2014).
Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photon. 9, 1–6 (2015).
Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).
Carvalho, A., Ribeiro, R. M. & Castro Neto, a. H. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 88, 115205 (2013).
Cui, Q., Ceballos, F., Kumar, N. & Zhao, H. Transient absorption microscopy of monolayer and bulk WSe2 . ACS Nano 8, 2970–2976 (2014).
He, J. et al. Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures. Nature Commun. 5, 5622 (2014).
Mouri, S. et al. Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation. Phys. Rev. B 90, 155449 (2014).
Nie, Z. et al. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2 . ACS Nano 8, 10931–10940 (2014).
Shi, H. et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013).
Strait, J. H., Nene, P. & Rana, F. High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenide MoS2 . Phys. Rev. B 90, 245402 (2014).
Sun, D. et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625–5629 (2014).
Wang, H., Zhang, C. & Rana, F. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2 . Nano Lett. 15, 339–345 (2014).
Borzda, T. et al. Charge photogeneration in few-layer MoS2 . Adv. Funct. Mater. 25, 3351–3358 (2015).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
Gabor, N. M., Zhong, Z., Bosnick, K. & McEuen, P. L. Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube p–i–n photodiodes. Phys. Rev. Lett. 108, 087404 (2012).
Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013).
Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).
Beal, A. R., Knights, J. C. & Liang, W. Y. Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J. Phys. C 5, 3540–3551 (1972).
Wang, K. et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7, 9260–9267 (2013).
Li, D. et al. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nature Commun. 6, 7509 (2015).
Kautek, W. Electronic mobility anisotropy of layered semiconductors: transversal photoconductivity measurements at n-MoSe2 . J. Phys. C 15, L519–L525 (1982).
Swathi, R. S. & Sebastian, K. L. Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys. 129, 054703 (2008).
Acknowledgements
The authors thank Q. Ma and P. Jarillo-Herrero for their instruction on the layer assembly technique, and M. Lundeberg for discussions. M.M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (PGSD3-426325-2012). F.V. acknowledges financial support from Marie-Curie International Fellowship COFUND and the ICFOnest programme. F.K. acknowledges support by Fundacio Cellex Barcelona, the ERC Career integration grant (294056, GRANOP), the ERC starting grant (307806, CarbonLight), the Mineco grants RYC-2012-12281 and FIS2013-47161-P, and support by the EC under the Graphene Flagship (contract no. CNECT-ICT-604391). P.S. acknowledges financial support from a scholarship from the ‘la Caixa’ Banking Foundation.
Author information
Authors and Affiliations
Contributions
M.M. and F.H.L.K. conceived and designed the experiments. M.M., P.S. and F.V. fabricated the samples, carried out the experiments and performed the data analysis. K.W. and T.T. provided boron nitride crystals. K.G.S. and A.R.P. provided assistance for the photoluminescence measurements. M.M., F.V., K.J.T., P.S. and F.H.L.K co-wrote the manuscript, with the participation of K.G.S. and A.R.P.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary Information (PDF 3485 kb)
Rights and permissions
About this article
Cite this article
Massicotte, M., Schmidt, P., Vialla, F. et al. Picosecond photoresponse in van der Waals heterostructures. Nature Nanotech 11, 42–46 (2016). https://doi.org/10.1038/nnano.2015.227
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2015.227
This article is cited by
-
Photocurrent as a multiphysics diagnostic of quantum materials
Nature Reviews Physics (2023)
-
Photonic van der Waals integration from 2D materials to 3D nanomembranes
Nature Reviews Materials (2023)
-
Mixed-dimensional WS2/WSe2/Si unipolar barrier heterostructure for high-performance photodetection
Science China Materials (2023)
-
Polarization in the van der Waals–bonded graphene/hBN heterostructures with triangular pores
Acta Mechanica (2023)
-
Ultrafast hot carrier transfer in WS2/graphene large area heterostructures
npj 2D Materials and Applications (2022)