Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bridging the divide between human and environmental nanotoxicology

Abstract

The need to assess the human and environmental risks of nanoscale materials has prompted the development of new metrological tools for their detection, quantification and characterization. Some of these methods have tremendous potential for use in various scenarios of nanotoxicology. However, in some cases, the limited dialogue between environmental scientists and human toxicologists has hampered the full exploitation of these resources. Here we review recent progress in the development of methods for nanomaterial analysis and discuss the use of these methods in environmental and human toxicology. We highlight the opportunities for collaboration between these two research areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of isotopically labelled ZnO nanoparticless in a toxicity test.
Figure 2: Characterization of porous silicon nanoparticles (pSi NPs) for in vitro or post in vivo exposure in blood.

Similar content being viewed by others

References

  1. Nowack, B. et al. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 31, 50–59 (2012).

    CAS  Google Scholar 

  2. Von der Kammer, F. et al. Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environ. Toxicol. Chem. 31, 32–49 (2012).

    CAS  Google Scholar 

  3. Montaño, M. D., Lowry, G. V., von der Kammer, F., Blue, J. & Ranville, J. F. Current status and future direction for examining engineered nanoparticles in natural systems. Environ. Chem. 11, 351–366 (2014). We recommend this review for a synopsis of available techniques for the detection and characterization of engineered nanoparticles in complex samples.

    Google Scholar 

  4. Meesters, J. A., Veltman, K., Hendriks, A. J. & van de Meent, D. Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment. Integr. Environ. Assess. Manag. 9, e15–e26 (2013). A comprehensive discussion of how specific physicochemical properties of nanomaterials should be addressed to achieve sufficient applicability of the REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) method to their risk assessment.

    Google Scholar 

  5. Godwin, H. et al. Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano 9, 3409–3417 (2015).

    CAS  Google Scholar 

  6. Lespes, G. & Gigault, J. Hyphenated analytical techniques for multidimensional characterisation of submicron particles: a review. Anal. Chim. Acta 692, 26–41 (2011).

    CAS  Google Scholar 

  7. Tiede, K. et al. Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge. J. Anal. At. Spectrom. 25, 1149–1154 (2010).

    CAS  Google Scholar 

  8. Tiede, K. et al. A robust size-characterisation methodology for studying nanoparticle behaviour in 'real' environmental samples, using hydrodynamic chromatography coupled to ICP-MS. J. Anal. At. Spectrom. 24, 964–972 (2009).

    CAS  Google Scholar 

  9. Baalousha, M., Stolpe, B. & Lead, J. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J. Chromatogr. 1218, 4078–4103 (2011).

    CAS  Google Scholar 

  10. Kammer, F. v. d., Legros, S., Hofmann, T., Larsen, E. H. & Loeschner, K. Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends Anal. Chem. 30, 425–436 (2011).

    Google Scholar 

  11. Meisterjahn, B., Neubauer, E., von der Kammer, F., Hennecke, D. & Hofmann, T. Asymmetrical flow-field-flow fractionation coupled with inductively coupled plasma mass spectrometry for the analysis of gold nanoparticles in the presence of natural nanoparticles. J. Chromatogr. 1372, 204–211 (2014).

    CAS  Google Scholar 

  12. Montaño, M., Badiei, H., Bazargan, S. & Ranville, J. Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Env. Sci. Nano 1, 338–346 (2014).

    Google Scholar 

  13. Borovinskaya, O., Gschwind, S., Hattendorf, B., Tanner, M. & Gu¨nther, D. Simultaneous mass quantification of nanoparticles of different composition in a mixture by microdroplet generator-ICPTOFMS. Anal. Chem. 86, 8142–8148 (2014).

    CAS  Google Scholar 

  14. Cornelis, G. & Hassellov, M. A signal deconvolution method to discriminate smaller nanoparticles in single particle ICP-MS. J. Anal. At. Spectrom. 29, 134–144 (2014).

    CAS  Google Scholar 

  15. Hineman, A. & Stephan, C. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J. Anal. At. Spectrom. 29, 1252–1257 (2014).

    CAS  Google Scholar 

  16. Pergantis, S. A., Jones-Lepp, T. L. & Heithmar, E. M. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles. Anal. Chem. 84, 6454–6462 (2012).

    CAS  Google Scholar 

  17. Loeschner, K. et al. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal. Bioanal. Chem. 405, 8185–8195 (2013).

    CAS  Google Scholar 

  18. Lee, S. et al. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ. Sci. Technol. 48, 10291–10300 (2014).

    CAS  Google Scholar 

  19. Singh, G., Stephan, C., Westerhoff, P., Carlander, D. & Duncan, T. V. Measurement methods to detect, characterize, and quantify engineered nanomaterials in foods. Comp. Rev. Food Sci. Food Safety 13, 693–704 (2014).

    CAS  Google Scholar 

  20. Love, S. A., Maurer-Jones, M. A., Thompson, J. W., Lin, Y.-S. & Haynes, C. L. Assessing nanoparticle toxicity. Annu. Rev. Anal. Chem. 5, 181–205 (2012).

    CAS  Google Scholar 

  21. Jones, C. F. & Grainger, D. W. 'In vitro' assessments of nanomaterial toxicity. Adv. Drug Del. Rev. 61, 438–456 (2009).

    CAS  Google Scholar 

  22. Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J. & Hussain, S. M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 101, 239–253 (2008).

    CAS  Google Scholar 

  23. Tejamaya, M., Ro¨mer, I., Merrifield, R. C. & Lead, J. R. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 46, 7011–7017 (2012).

    CAS  Google Scholar 

  24. Malysheva, A. et al. Sorption of silver nanoparticles to laboratory plastic during (eco)toxicological testing. Nanotoxicology DOI:10.3109/17435390.2015.1084059 (in the press).

  25. Schultz, A. G. et al. Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing. Environ. Chem. 11, 207–226 (2014).

    CAS  Google Scholar 

  26. Cupi, D., Hartmann, N. B. & Baun, A. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna. Environ. Toxicol. Chem. 34, 497–506 (2015).

    CAS  Google Scholar 

  27. Slaveykova, V. I., Guignard, C., Eybe, T., Migeon, H.-N. & Hoffmann, L. Dynamic NanoSIMS ion imaging of unicellular freshwater algae exposed to copper. Anal. Bioanal. Chem. 393, 583–589 (2009).

    CAS  Google Scholar 

  28. Audinot, J. N. et al. Identification and localization of nanoparticles in tissues by mass spectrometry. Surf. Interface Anal. 45, 230–233 (2013).

    CAS  Google Scholar 

  29. Tsang, C.-N., Ho, K.-S., Sun, H. & Chan, W.-T. Tracking bismuth antiulcer drug uptake in single helicobacter pylori cells. J. Am. Chem. Soc. 133, 7355–7357 (2011).

    CAS  Google Scholar 

  30. Ho, K.-S. & Chan, W.-T. Time-resolved ICP-MS measurement for single-cell analysis and on-line cytometry. J. Anal. At. Spectrom. 25, 1114–1122 (2010).

    CAS  Google Scholar 

  31. Zheng, L.-N. et al. Determination of quantum dots in single cells by inductively coupled plasma mass spectrometry. Talanta 116, 782–787 (2013).

    CAS  Google Scholar 

  32. Groombridge, A. S. et al. High sensitive elemental analysis of single yeast cells (Saccharomyces cerevisiae) by time-resolved inductively-coupled plasma mass spectrometry using a high efficiency cell introduction system. Anal. Sci. 29, 597–603 (2013).

    CAS  Google Scholar 

  33. Vranic, S. et al. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part. Fibre Toxicol. 10, 2 (2013).

    CAS  Google Scholar 

  34. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    CAS  Google Scholar 

  35. Bandura, D. R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    CAS  Google Scholar 

  36. Seekell, K., Price, H., Marinakos, S. & Wax, A. Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis. Methods 56, 310–316 (2012).

    CAS  Google Scholar 

  37. Badireddy, A. R., Wiesner, M. R. & Liu, J. Detection, characterization, and abundance of engineered nanoparticles in complex waters by hyperspectral imagery with enhanced darkfield microscopy. Environ. Sci. Technol. 46, 10081–10088 (2012).

    CAS  Google Scholar 

  38. Fairbairn, N., Christofidou, A., Kanaras, A. G., Newman, T. A. & Muskens, O. L. Hyperspectral darkfield microscopy of single hollow gold nanoparticles for biomedical applications. Phys. Chem. Chem. Phys. 15, 4163–4168 (2013).

    CAS  Google Scholar 

  39. Mortimer, M. et al. Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by protozoa. Environ. Sci. Technol. 48, 8760–8767 (2014).

    CAS  Google Scholar 

  40. Lombi, E., Scheckel, K. G. & Kempson, I. M. In situ analysis of metal(loid)s in plants: State of the art and artefacts. Environ. Exp. Bot. 72, 3–17 (2011).

    CAS  Google Scholar 

  41. McRae, R., Bagchi, P., Sumalekshmy, S. & Fahrni, C. J. In situ imaging of metals in cells and tissues. Chem. Rev. 109, 4780–4827 (2009).

    CAS  Google Scholar 

  42. Hernandez-Viezcas, J. A. et al. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7, 1415–1423 (2013).

    CAS  Google Scholar 

  43. Duke, E. M. et al. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy 143, 77–87 (2014).

    CAS  Google Scholar 

  44. Parkinson, D. et al. Nanoimaging (eds Sousa, A. A. & Kruhlak, M. J.) Ch. 25, 457–481 (Methods in Molecular Biology Vol. 950, Springer, 2013).

    Google Scholar 

  45. Gräfe, M., Donner, E., Collins, R. N. & Lombi, E. Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: A critical review. Anal. Chim. Acta 822, 1–22 (2014).

    Google Scholar 

  46. Ma, H., Williams, P. L. & Diamond, S. A. Ecotoxicity of manufactured ZnO nanoparticles — A review. Environ. Pollut. 172, 76–85 (2013).

    CAS  Google Scholar 

  47. Osmond-McLeod, M. J. et al. Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano-or larger particles. Nanotoxicology 8, 72–84 (2013).

    Google Scholar 

  48. Lombi, E. et al. Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ. Sci. Technol. 46, 9089–9096 (2012).

    CAS  Google Scholar 

  49. Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotech. 8, 772–781 (2013).

    CAS  Google Scholar 

  50. Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotech. 7, 779–786 (2012).

    CAS  Google Scholar 

  51. Ju, S. & Yeo, W.-S. Quantification of proteins on gold nanoparticles by combining MALDI-TOF MS and proteolysis. Nanotechnology 23, 135701 (2012).

    Google Scholar 

  52. Walkey C. D. et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    CAS  Google Scholar 

  53. Suman, T., Rajasree, S. R. & Kirubagaran, R. Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol. Environ. Saf. 113, 23–30 (2015).

    CAS  Google Scholar 

  54. Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R. & Dhawan, A. A flow cytometric method to assess nanoparticle uptake in bacteria. Cytometry A 79A, 707–712 (2011).

    CAS  Google Scholar 

  55. Dos Santos, T., Varela, J., Lynch, I., Salvati, A. & Dawson, K. A. quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 7, 3341–3349 (2011).

    CAS  Google Scholar 

  56. Pratsinis, A., Hervella, P., Leroux, J. C., Pratsinis, S. E. & Sotiriou, G. A. Toxicity of silver nanoparticles in macrophages. Small 9, 2576–2584 (2013).

    CAS  Google Scholar 

  57. Wax, A. & Sokolov, K. Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles. Laser Photon. Rev. 3, 146–158 (2009).

    CAS  Google Scholar 

  58. Meyer, J. N. et al. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat. Toxicol. 100, 140–150 (2010).

    CAS  Google Scholar 

  59. Fadeel, B. & Garcia-Bennett, A. E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Del. Rev. 62, 362–374 (2010).

    CAS  Google Scholar 

  60. Salonen, J., Kaukonen, A. M., Hirvonen, J. & Lehto, V. P. Mesoporous silicon in drug delivery applications. J. Pharm. Sci. 97, 632–653 (2008).

    CAS  Google Scholar 

  61. Bimbo, L. M. et al. Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32, 2625–2633 (2011).

    CAS  Google Scholar 

  62. Park, J.-H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Mater. 8, 331–336 (2009).

    CAS  Google Scholar 

  63. Wan, Y., Apostolou, S., Dronov, R., Kuss, B. & Voelcker, N. H. Cancer-targeting siRNA delivery from porous silicon nanoparticles. Nanomedicine 9, 2309–2321 (2014).

    CAS  Google Scholar 

  64. Kafshgari, M. H. et al. Oligonucleotide delivery by chitosan-functionalized porous silicon nanoparticles. Nano Res. 8, 2033–2046 (2015).

    CAS  Google Scholar 

  65. Cirtiu, C.-M., Fleury, N. & Chady, S. Assessing the fate of nanoparticles in biological fluids using SP-ICP-MS (2015); http://www.perkinelmer.com/CMSResources/Images/44-171044APP_012008_01-NexION-350S-Fate-of-NPs-in-Bio-Fluids.pdf

  66. Peters, R. J. et al. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal. Bioanal. Chem. 406, 3875–3885 (2014). This paper is a good example of an integrated approach to the analysis of ENPs in complex matrices: from matrix-specific extraction methods to nano-specific single-particle analysis techniques.

    CAS  Google Scholar 

  67. Loeschner, K. et al. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection. Food Chem. 181, 78–84 (2015).

    CAS  Google Scholar 

  68. Grombe, R. et al. Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. Anal. Bioanal. Chem. 406, 3895–3907 (2014).

    CAS  Google Scholar 

  69. Tadjiki, S., Assemi, S., Deering, C., Veranth, J. & Miller, J. Detection, separation, and quantification of unlabeled silica nanoparticles in biological media using sedimentation field-flow fractionation. J. Nanopart. Res. 11, 981–988 (2009).

    CAS  Google Scholar 

  70. Miyashita, S.-i. et al. Time-resolved ICP-MS measurement: a new method for elemental and multiparametric analysis of single cells. Anal. Sci. 30, 219–224 (2014). This review elucidates technical principles and describes the challenges of TR ICP-MS applied to single-cell analysis, including the most recent developments of this technique.

    CAS  Google Scholar 

  71. De Jonge, M. D. et al. Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution. Proc. Natl Acad. Sci. USA 107, 15676–15680 (2010).

    CAS  Google Scholar 

  72. Ho, K.-S., Lui, K.-O., Lee, K.-H. & Chan, W.-T. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry. Spectrochim. Acta Part B 89, 30–39 (2013).

    CAS  Google Scholar 

  73. Pace, H. E. et al. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 83, 9361–9369 (2011).

    CAS  Google Scholar 

  74. Pace, H. E. et al. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ. Sci. Technol. 46, 12272–12280 (2012).

    CAS  Google Scholar 

  75. Reed, R. B., Higgins, C. P., Westerhoff, P., Tadjiki, S. & Ranville, J. F. Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 27, 1093–1100 (2012).

    CAS  Google Scholar 

  76. Laborda, F., Jiménez-Lamana, J., Bolea, E. & Castillo, J. R. Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 26, 1362–1371 (2011).

    CAS  Google Scholar 

  77. Laborda, F., Jiménez-Lamana, J., Bolea, E. & Castillo, J. R. Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS. J. Anal. At. Spectrom. 28, 1220–1232 (2013).

    CAS  Google Scholar 

  78. Olesik, J. W. & Gray, P. J. Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle. J. Anal. At. Spectrom. 27, 1143–1155 (2012).

    CAS  Google Scholar 

  79. Mitrano, D. M. et al. Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J. Anal. At. Spectrom. 27, 1131–1142 (2012).

    CAS  Google Scholar 

  80. Mitrano, D. M. et al. Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry. Environ. Toxicol. Chem. 31, 115–121 (2012). This article provides detailed insights into fundamental principles of single-particle ICP-MS, together with the example of the detection of silver nanoparticles in wastewater samples.

    CAS  Google Scholar 

  81. Mitrano, D. et al. Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Env. Sci. Nano 1, 248–259 (2014).

    CAS  Google Scholar 

  82. Gray, E. P. et al. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ. Sci. Technol. 47, 14315–14323 (2013).

    CAS  Google Scholar 

  83. Hadioui, M., Leclerc, S. & Wilkinson, K. J. Multimethod quantification of Ag+ release from nanosilver. Talanta 105, 15–19 (2013).

    CAS  Google Scholar 

  84. Tuoriniemi, J., Cornelis, G. & Hassellöv, M. Size discrimination and detection capabilities of single-particle icpms for environmental analysis of silver nanoparticles. Anal. Chem. 84, 3965–3972 (2012).

    CAS  Google Scholar 

  85. Liu, J., Murphy, K. E., MacCuspie, R. I. & Winchester, M. R. Capabilities of single particle inductively coupled plasma mass spectrometry for the size measurement of nanoparticles: a case study on gold nanoparticles. Anal. Chem. 86, 3405–3414 (2014).

    CAS  Google Scholar 

  86. Telgmann, L., Metcalfe, C. & Hintelmann, H. Rapid size characterization of silver nanoparticles by single particle ICP-MS and isotope dilution. J. Anal. At. Spectrom. 29, 1265–1272 (2014).

    CAS  Google Scholar 

  87. Bi, X. et al. Quantitative resolution of nanoparticle sizes using single particle inductively coupled plasma mass spectrometry with the K-means clustering algorithm. J. Anal. At. Spectrom. 29, 1630–1639 (2014).

    CAS  Google Scholar 

  88. Striegel, A. M. & Brewer, A. K. Hydrodynamic chromatography. Annu. Rev. Anal. Chem. 5, 15–34 (2012).

    CAS  Google Scholar 

  89. Striegel, A. M. in Liquid Chromatography (eds Fanali, S. et al.) 193–223 (Elsevier, 2013).

    Google Scholar 

  90. Liu, F.-K. & Wei, G.-T. Effect of mobile-phase additives on separation of gold nanoparticles by size-exclusion chromatography. Chromatographia 59, 115–111 (2004).

    CAS  Google Scholar 

  91. Degueldre, C., Favarger, P. Y. & Wold, S. Gold colloid analysis by inductively coupled plasma–mass spectrometry in a single particle mode. Anal. Chim. Acta 555, 263–268 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the South Australian Premier's Research and Industry Fund for a grant under the Collaboration Pathway program. We thank M. Cicera for preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas H. Voelcker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malysheva, A., Lombi, E. & Voelcker, N. Bridging the divide between human and environmental nanotoxicology. Nature Nanotech 10, 835–844 (2015). https://doi.org/10.1038/nnano.2015.224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing