Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores

Abstract

Graphene and other two-dimensional materials offer a new class of ultrathin membranes that can have atomically defined nanopores with diameters approaching those of hydrated ions1,2,3,4,5,6,7. These nanopores have the smallest possible pore volumes of any ion channel, which, due to ionic dehydration8 and electrokinetic effects9, places them in a novel transport regime and allows membranes to be created that combine selective ionic transport10 with ultimate permeance11,12,13 and could lead to separations14,15 and sensing16 applications. However, experimental characterization and understanding of sub-continuum ionic transport in nanopores below 2 nm is limited17,18. Here we show that isolated sub-2 nm pores in graphene exhibit, in contrast to larger pores, diverse transport behaviours consistent with ion transport over a free-energy barrier arising from ion dehydration and electrostatic interactions. Current–voltage measurements reveal that the conductance of graphene nanopores spans three orders of magnitude8 and that they display distinct linear, voltage-activated or rectified current–voltage characteristics and different cation-selectivity profiles. In rare cases, rapid, voltage-dependent stochastic switching is observed, consistent with the presence of a dissociable group in the pore vicinity19. A modified Nernst–Planck model incorporating ion hydration and electrostatic effects quantitatively matches the observed behaviours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Statistical isolation and conductance measurement of graphene nanopores.
Figure 2: Current–voltage (IV) characteristics reflect ion hydration and electrostatic effects.
Figure 3: Hydration-based cation selectivity.
Figure 4: Voltage-activated switching of nanopore state.

Similar content being viewed by others

References

  1. Russo, C. J. & Golovchenko, J. A. Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl Acad. Sci. USA 109, 5953–5957 (2012).

    Article  CAS  Google Scholar 

  2. Yamada, Y. et al. Subnanometer vacancy defects introduced on graphene by oxygen gas. J. Am. Chem. Soc. 136, 2232–2235 (2014).

    Article  CAS  Google Scholar 

  3. Lv, R. et al. Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci. Rep. 2, 586 (2012).

    Article  Google Scholar 

  4. Sint, K., Wang, B. & Král, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 130, 16448–16449 (2008).

    Article  CAS  Google Scholar 

  5. He, Z., Zhou, J., Lu, X. & Corry, B. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano 7, 10148–10157 (2013).

    Article  CAS  Google Scholar 

  6. O'Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).

    Article  CAS  Google Scholar 

  7. Zhao, S., Xue, J. & Kang, W. Ion selection of charge-modified large nanopores in a graphene sheet. J. Chem. Phys. 139, 114702 (2013).

    Article  Google Scholar 

  8. Suk, M. E. & Aluru, N. R. Ion transport in sub-5-nm graphene nanopores. J. Chem. Phys. 140, 084707 (2014).

    Article  Google Scholar 

  9. Luchinsky, D., Tindjong, R., Kaufman, I., McClintock, P. & Eisenberg, R. Self-consistent analytic solution for the current and the access resistance in open ion channels. Phys. Rev. E 80, 021925 (2009).

    Article  CAS  Google Scholar 

  10. Laio, A. & Torre, V. Physical origin of selectivity in ionic channels of biological membranes. Biophys. J. 76, 129–148 (1999).

    Article  CAS  Google Scholar 

  11. Suk, M. E. & Aluru, N. R. Molecular and continuum hydrodynamics in graphene nanopores. RSC Adv. 3, 9365–9372 (2013).

    Article  CAS  Google Scholar 

  12. Celebi, K. et al. Ultimate permeation across atomically thin porous graphene. Science 344, 289–292 (2014).

    Article  CAS  Google Scholar 

  13. Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nature Nanotech. 10, 459–464 (2015).

    Article  CAS  Google Scholar 

  14. Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    Article  CAS  Google Scholar 

  15. O'Hern, S. C. et al. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6, 10130–10138 (2012).

    Article  CAS  Google Scholar 

  16. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotech. 4, 265–270 (2009).

    Article  CAS  Google Scholar 

  17. Walker, M. I., Weatherup, R. S., Bell, N. A. W., Hofmann, S. & Keyser, U. F. Free-standing graphene membranes on glass nanopores for ionic current measurements. Appl. Phys. Lett. 106, 023119 (2015).

    Article  Google Scholar 

  18. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    Article  CAS  Google Scholar 

  19. Kasianowicz, J. J. & Bezrukov, S. M. Protonation dynamics of the alpha-toxin ion channel from spectral analysis of pH-dependent current fluctuations. Biophys. J. 69, 94–105 (1995).

    Article  CAS  Google Scholar 

  20. Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle-fibers. Nature 260, 799–802 (1976).

    Article  CAS  Google Scholar 

  21. Boutilier, M. S. H. et al. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano 8, 841–849 (2014).

    Article  CAS  Google Scholar 

  22. Wells, D. B., Belkin, M., Comer, J. & Aksimentiev, A. Assessing graphene nanopores for sequencing DNA. Nano Lett. 12, 4117–4123 (2012).

    Article  CAS  Google Scholar 

  23. Schneider, G. F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).

    Article  CAS  Google Scholar 

  24. Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    Article  CAS  Google Scholar 

  25. Kosińska, I. D. How the asymmetry of internal potential influences the shape of IV characteristic of nanochannels. J. Chem. Phys. 124, 244707 (2006).

    Article  Google Scholar 

  26. Burger, M., Eisenberg, R. S. & Engl, H. W. Inverse problems related to ion channel selectivity. SIAM J. Appl. Math. 67, 960–989 (2007).

    Article  CAS  Google Scholar 

  27. Chung, S., Anderson, O. S. & Krishnamurthy, V. V. (eds.) Biological Membrane Ion Channels: Dynamics, Structure, and Applications (Springer, 2007).

    Book  Google Scholar 

  28. Chui, J. K. W. A New Paradigm for Voltage-Clamp Studies of Synthetic Ion Channels PhD thesis, Univ. Victoria (2011).

    Google Scholar 

  29. Bezrukov, S. M. & Kasianowicz, J. J. Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. Phys. Rev. Lett. 70, 2352–2355 (1993).

    Article  CAS  Google Scholar 

  30. Jain, T., Aernecke, M., Liberman, V. & Karnik, R. High resolution fabrication of nanostructures using controlled proximity nanostencil lithography. Appl. Phys. Lett. 104, 083117 (2014).

    Article  Google Scholar 

  31. Lin, Y.-C. et al. Clean transfer of graphene for isolation and suspension. ACS Nano 5, 2362–2368 (2011).

    Article  CAS  Google Scholar 

  32. Jain, T., Guerrero, R. J. S., Aguilar, C. A. & Karnik, R. Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes. Anal. Chem. 85, 3871–3878 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Basic Energy Sciences under award no. DE-SC0008059. The research made use of the Materials Research Science and Engineering Centers Shared Experimental Facilities supported by the National Science Foundation under award no. DMR-0819762 at the Massachusetts Institute of Technology. Scanning transmission electron microscopy was conducted at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences (CNMS), which is a US Department of Energy, Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Contributions

T.J. and R.K. designed the experiments and wrote the manuscript. T.J., B.C.R. and R.J.S.G. performed ionic transport measurements. T.J., R.K. and M.S.H.B. developed the theoretical model and T.J. performed data analysis. S.C.O. and J.C.I. performed the scanning transmission electron microscopy experiments, and M.S.H.B compiled the histogram.

Corresponding author

Correspondence to Rohit Karnik.

Ethics declarations

Competing interests

R.K. declares financial interest in a start-up company that aims to commercialize graphene membranes.

Supplementary information

Supplementary information

Supplementary Information (PDF 8521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, T., Rasera, B., Guerrero, R. et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nature Nanotech 10, 1053–1057 (2015). https://doi.org/10.1038/nnano.2015.222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing