Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance

Abstract

Magnetic skyrmions are localized non-collinear spin textures with a high potential for future spintronic applications1,2,3,4,5,6,7,8,9,10,11,12. Skyrmion phases have been discovered in a number of materials9,11 and a focus of current research is to prepare, detect and manipulate individual skyrmions for implementation in devices6,7,8. The local experimental characterization of skyrmions has been performed by, for example, Lorentz microscopy3 or atomic-scale tunnel magnetoresistance measurements using spin-polarized scanning tunnelling microscopy4,7,12. Here we report a drastic change of the differential tunnel conductance for magnetic skyrmions that arises from their non-collinearity: mixing between the spin channels locally alters the electronic structure, which makes a skyrmion electronically distinct from its ferromagnetic environment. We propose this tunnelling non-collinear magnetoresistance as a reliable all-electrical detection scheme for skyrmions with an easy implementation into device architectures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetoresistive effects in planar junctions.
Figure 2: Individual skyrmions in PdFe/Ir(111).
Figure 3: Magnetic field-dependent properties of an individual skyrmion.
Figure 4: DFT and TB calculations.
Figure 5: Spatial variation of the differential tunnel conductance and the calculated vacuum LDOS within a skyrmion.

Similar content being viewed by others

References

  1. Bogdanov, A. N. & Yablonskii, D. A. Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68, 101–103 (1989).

    Google Scholar 

  2. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  Google Scholar 

  3. Yu, X. Z. et al. Real space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  4. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Phys. 7, 713–718 (2011).

    Article  CAS  Google Scholar 

  5. Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rößler, U. K. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technology? J. Phys. D 44, 392001 (2011).

    Article  Google Scholar 

  6. Fert, A., Cros, V., & Sampaio, J. Skyrmions on the track. Nature Nanotech. 8, 152–156 (2013).

    Article  CAS  Google Scholar 

  7. Romming, N. et al. Writing and deleting single skyrmions. Science 341, 636–639 (2013).

    Article  CAS  Google Scholar 

  8. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotech. 8, 839–844 (2013).

    Article  CAS  Google Scholar 

  9. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nature Nanotech. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  10. Dupé, B., Hoffmann, M., Paillard, C. & Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nature Commun. 5, 4030 (2014).

    Article  Google Scholar 

  11. von Bergmann, K., Kubetzka, A., Pietzsch, O. & Wiesendanger, R. Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy. J. Phys. Condens. Matter 26, 394002 (2014).

    Article  Google Scholar 

  12. Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

    Article  Google Scholar 

  13. Dzyaloshinskii, I. E. Thermodynamic theory of ‘weak’ ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1262 (1957).

    Google Scholar 

  14. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  15. Fert, A. & Levy, P. A. Role of anisotropic exchange interactions in determining the properties of spin glasses. Phys. Rev. Lett. 44, 1538–1541 (1980).

    Article  CAS  Google Scholar 

  16. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  CAS  Google Scholar 

  17. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magneto-resistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828 (1989).

    Article  CAS  Google Scholar 

  18. Jullière, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  19. Wiesendanger, R., Güntherodt, H.-J., Güntherodt, G., Gambino, R. J. & Ruf, R. Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys. Rev. Lett. 65, 247 (1990).

    Article  CAS  Google Scholar 

  20. McGuire, T. R. & Potter, R. I. Anisotropic magnetoresistance in ferromagnetic 3D alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

    Article  Google Scholar 

  21. Bode, M. et al. Magnetization-direction dependent local electronic structure probed by scanning tunneling spectroscopy. Phys. Rev. Lett. 89, 237205 (2002).

    Article  CAS  Google Scholar 

  22. Gould, C. et al. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004).

    Article  CAS  Google Scholar 

  23. Levy, P. M. & Zhang, S. Resistivity due to domain wall scattering. Phys. Rev. Lett. 79, 5110–5113 (1997).

    Article  CAS  Google Scholar 

  24. Kent, A. D., Yu, J., Rüdiger, U. & Parkin, S. S. P. Domain wall resistivity in epitaxial thin film microstructures. J. Phys. Condens. Matter 13, 461–468 (2001).

    Article  Google Scholar 

  25. Marrows, C. H. & Dalton, B. C. Spin mixing and spin-current asymmetry measured by domain wall magnetoresistance. Phys. Rev. Lett. 92, 97206 (2004).

    Article  CAS  Google Scholar 

  26. Seemann, K. M. et al. Disentangling the physical contributions to electrical resistance in magnetic domain walls: a multiscale study. Phys. Rev. Lett. 108, 77201 (2012).

    Article  CAS  Google Scholar 

  27. Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1550 (2009).

    Article  CAS  Google Scholar 

  28. Tersoff, J. & Hamann, D. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).

    Article  CAS  Google Scholar 

  29. Sandratskii, L. M. Noncollinear magnetism in itinerant-electron systems: theory and applications. Adv. Phys. 47, 91–160 (1998).

    Article  CAS  Google Scholar 

  30. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  31. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

Download references

Acknowledgements

C.H, A.K, N.R., K.v.B., R.W., S.H. and B.D. acknowledge financial support from the Deutsche Forschungsgemeinschaft via GrK 1286, SFB 668 and project DU1489/2-1. S.H. and B.D. thank the North-German Supercomputing Alliance (HLRN) for providing computational resources. We thank P. Mavropoulos, Y. Mokrousov, G. Bihlmayer and A. Kobs for discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.H. performed the measurements, C.H., K.v.B. and A.K. analysed the experimental data, C.H., F.O. and A.K. prepared the figures, and K.v.B., A.K. and S.H. wrote the manuscript. B.D. performed the DFT calculations, F.O. and S.H. devised the TB model, F.O. performed the TB calculations and F.O., B.D. and S.H. analysed the calculations. All the authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to André Kubetzka or Kirsten von Bergmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanneken, C., Otte, F., Kubetzka, A. et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nature Nanotech 10, 1039–1042 (2015). https://doi.org/10.1038/nnano.2015.218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing