Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode

Abstract

Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated1,2,3,4,5,6. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification7,8,9,10 that can only be obtained by direct tunnelling11,12. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement10,13,14,15,16,17,18,19,20,21. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region22. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon–phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal–oxide–semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W–1 cm–2 at −0.1 V.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the nanoantenna-coupled n-type MOS tunnel diode and rectification mechanism.
Figure 2: Infrared complex dielectric function of SiO2 and comparison of computed and measured reflectance from a nanoantenna-coupled device.
Figure 3: Simulated finite-difference time-domain complex electric-field profiles in nanoantenna-coupled MOS diodes at relevant wavelengths in the thermal infrared region.
Figure 4: Coherent QCL-illumination photocurrent measurement.
Figure 5: Electrical and spectral characteristics of the broadband BB illumination of the nanoantenna-coupled MOS tunnel-diode structure.

Similar content being viewed by others

References

  1. Brown, W. C. An experimental low power density rectenna. IEEE Int. Microw. Symp. Digest 1, 197–200 (1991).

    Google Scholar 

  2. Green, S. I. Point contact MOM tunneling detector analysis. J. Appl. Phys. 42, 1166–1169 (1971).

    Article  CAS  Google Scholar 

  3. Green, M. A. & Shewchun, J. Current multiplication in metal–insulator–semiconductor (MIS) tunnel diodes. Solid-State Electron. 17, 349–365 (1974).

    Article  CAS  Google Scholar 

  4. McSpadden, J. O., Fan, L. & Chang, K. Design and experiments of a high-conversion-efficiency 5.8-Ghz rectenna. IEEE Trans. Microw. Theory 46, 2053–2060 (1998).

    Article  Google Scholar 

  5. Kwok, S. P. Metal–oxide–metal (M-O-M) detector. J. Appl. Phys. 42, 554–563 (1971).

    Article  CAS  Google Scholar 

  6. Suh, Y.-H. & Chang, K. A high-efficiency dual-frequency rectenna for 2.45-and 5.8-GHz wireless power transmission. IEEE Trans. Microw. Theory 50, 1784–1789 (2002).

    Article  Google Scholar 

  7. Byrnes, S. J., Blanchard, R. & Capasso, F. Harvesting renewable energy from earth's mid-infrared emissions. Proc. Natl Acad. Sci. USA 111, 3927–3932 (2014).

    Article  CAS  Google Scholar 

  8. Biagioni, P., Huang, J. S. & Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75, 024402 (2012).

    Article  Google Scholar 

  9. Ward, D. R., Hüser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nature Nanotech. 5, 732–736 (2010).

    Article  CAS  Google Scholar 

  10. Grover, S., Dmitriyeva, O., Estes, M. J. & Moddel, G. Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans. Nanotech. 9, 716–722 (2010).

    Article  Google Scholar 

  11. Sanchez, A., Singh, S. K. & Javan, A. Generation of infrared radiation in a metal-to-metal point-contact diode at synthesized frequencies of incident fields: a high-speed broad-band light modulator. Appl. Phys. Lett. 21, 240 (1972).

    Article  CAS  Google Scholar 

  12. Sanchez, A., Davis, C. F., Liu, K. C. & Javan, A. The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies. J. Appl. Phys. 49, 5270–5277 (1978).

    Article  Google Scholar 

  13. Adams, D. C. et al. Funneling light through a subwavelength aperture with epsilon-near-zero materials. Phys. Rev. Lett. 107, 133901 (2011).

    Article  CAS  Google Scholar 

  14. Alù, A., Silveirinha, M. G., Salandrino, A. & Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).

    Article  Google Scholar 

  15. Edwards, B., Alù, A., Young, M. E., Silveirinha, M. & Engheta, N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008).

    Article  Google Scholar 

  16. Liu, X., Starr, T., Starr, A. F. & Padilla, W. J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 207403 (2010).

    Article  Google Scholar 

  17. Wang, F. & Melosh, N. A. Plasmonic energy collection through hot carrier extraction. Nano Lett. 5426–5430 (2011).

  18. Kekatpure, R. D. & Davids, P. S. Channeling light into quantum-scale gaps. Phys. Rev. B 83, 075408 (2011).

    Article  Google Scholar 

  19. Pendry, J. B., Moreno, L. M. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004).

    Article  CAS  Google Scholar 

  20. Garcia-Vidal, F. J., Moreno, L. M. & Pendry, J. B. Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A 7, S97–S101 (2005).

    Article  Google Scholar 

  21. Davids, P. S., Intravaia, F. & Dalvit, D. A. R. Spoof polariton enhanced modal density of states in planar nanostructured metallic cavities. Opt. Exp. 22, 12424–12437 (2014).

    Article  CAS  Google Scholar 

  22. Ginn, J. C., Jarecki, R. L., Shaner, E. A. & Davids, P. S. Infrared plasmons on heavily-doped silicon. J. Appl. Phys. 110, 043110 (2011).

    Article  Google Scholar 

  23. Lehmann, A., Schumann, L. & Hübner, K. Optical phonons in amorphous silicon oxides. I. Calculation of the density of states and interpretation of LO TO splittings of amorphous SiO2 . Phys. Stat. Sol. B 117, 689–698 (1983).

    Article  CAS  Google Scholar 

  24. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

    Book  Google Scholar 

  25. Schenk, A. & Heiser, G. Modeling and simulation of tunneling through ultra-thin gate dielectrics. J. Appl. Phys. 81, 7900–7908 (1997).

    Article  CAS  Google Scholar 

  26. Jauho, A. P., Wingreen, N. S. & Meir, Y. Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50, 5528–5544 (1994).

    Article  CAS  Google Scholar 

  27. Shah, J. Hot Carriers in Semiconductor Nanostructures: Physics and Applications (Elsevier, 1992).

    Google Scholar 

  28. Landauer, R. & Martin, T. Barrier interaction time in tunneling. Rev. Mod. Phys. 66, 217 (1994).

    Article  Google Scholar 

  29. Cardona, M. & Peter, Y. Y. Fundamentals of Semiconductors (Springer, 2005).

    Google Scholar 

  30. Maraghechi, P., Foroughi-Abari, A., Cadien, K. & Elezzabi, A. Y. Enhanced rectifying response from metal–insulator–insulator–metal junctions. Appl. Phys. Lett. 99, 253503 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

P.S.D. thanks P. Rakich from Yale University and W. Burckel and R. Sanchez from Sandia for many useful and enlightening discussions. Funding for this work was provided by Sandia's Laboratory Directed Research and Development program and the US Department of Defense. Sandia is a multiprogramme laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Contributions

P.S.D. conceived and led the project. D.W.P., D.B.B. and P.S.D. designed and simulated the antenna. R.L.J. and A.S. developed the fabrication process and fabricated the devices. E.A.K., T.R., E.A.S. and P.S.D. performed the infrared experimental characterization of the devices.

Corresponding author

Correspondence to Paul S. Davids.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davids, P., Jarecki, R., Starbuck, A. et al. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode. Nature Nanotech 10, 1033–1038 (2015). https://doi.org/10.1038/nnano.2015.216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing