Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries

Abstract

Sodium-ion batteries have recently attracted significant attention as an alternative to lithium-ion batteries because sodium sources do not present the geopolitical issues that lithium sources might. Although recent reports on cathode materials for sodium-ion batteries have demonstrated performances comparable to their lithium-ion counterparts, the major scientific challenge for a competitive sodium-ion battery technology is to develop viable anode materials. Here we show that a hybrid material made out of a few phosphorene layers sandwiched between graphene layers shows a specific capacity of 2,440 mA h g−1 (calculated using the mass of phosphorus only) at a current density of 0.05 A g−1 and an 83% capacity retention after 100 cycles while operating between 0 and 1.5 V. Using in situ transmission electron microscopy and ex situ X-ray diffraction techniques, we explain the large capacity of our anode through a dual mechanism of intercalation of sodium ions along the x axis of the phosphorene layers followed by the formation of a Na3P alloy. The presence of graphene layers in the hybrid material works as a mechanical backbone and an electrical highway, ensuring that a suitable elastic buffer space accommodates the anisotropic expansion of phosphorene layers along the y and z axial directions for stable cycling operation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of sodiation in black phosphorus.
Figure 2: Evidence of monolayer and few-layer phosphorene.
Figure 3: Physical characterization of the phosphorene–graphene hybrid structure.
Figure 4: Electrochemical characterization of the phosphorene–graphene anode for sodium-ion batteries.

Similar content being viewed by others

References

  1. Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013).

    Article  CAS  Google Scholar 

  2. Barpanda, P., Oyama, G., Nishimura, S.-I., Chung, S.-C. & Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nature Commun. 5, 4358 (2014).

    Article  CAS  Google Scholar 

  3. Ellis, B. L., Makahnouk, W. R. M., Makimura, Y., Toghill, K. & Nazar, L. F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nature Mater. 6, 749–753 (2007).

    Article  CAS  Google Scholar 

  4. Lee, H.-W. et al. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nature Commun. 5, 5280 (2014).

    Article  CAS  Google Scholar 

  5. Palomares, V. et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012).

    Article  CAS  Google Scholar 

  6. Komaba, S. et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011).

    Article  CAS  Google Scholar 

  7. Cao, Y. L. et al. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012).

    Article  CAS  Google Scholar 

  8. Chevrier, V. L. & Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 158, A1011–A1014 (2011).

    Article  CAS  Google Scholar 

  9. Abel, P. R. et al. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J. Phys. Chem. C 117, 18885–18890 (2013).

    Article  CAS  Google Scholar 

  10. Baggetto, L., Keum, J. K., Browning, J. F. & Veith, G. M. Germanium as negative electrode material for sodium-ion batteries. Electrochem. Commun. 34, 41–44 (2013).

    Article  CAS  Google Scholar 

  11. Zhu, H. et al. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 13, 3093–3100 (2013).

    Article  CAS  Google Scholar 

  12. Wang, J. W., Liu, X. H., Mao, S. X. & Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 12, 5897–5902 (2012).

    Article  CAS  Google Scholar 

  13. Jow, T. R., Shacklette, L. W., Maxfield, M. & Vernick, D. The role of conductive polymers in alkali-metal secondary electrodes. J. Electrochem. Soc. 134, 1730–1733 (1987).

    Article  CAS  Google Scholar 

  14. Darwiche, A. et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 134, 20805–20811 (2012).

    Article  CAS  Google Scholar 

  15. Corbridge, D. E. C. Phosphorus Chemistry, Biochemistry and Technology 6th edn (CRC Press, 2013).

    Google Scholar 

  16. Cotton, A., Wilkinson, G., Murillo, C. A. & Bochmann, M. Advanced Inorganic Chemistry (Wiley, 1999).

    Google Scholar 

  17. Qian, J., Qiao, D., Ai, X., Cao, Y. & Yang, H. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 48, 8931–8933 (2012).

    Article  CAS  Google Scholar 

  18. Wang, L. et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem. Int. Ed. 51, 9034–9037 (2012).

    Article  CAS  Google Scholar 

  19. Marino, C., Debenedetti, A., Fraisse, B., Favier, F. & Monconduit, L. Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem. Commun. 13, 346–349 (2011).

    Article  CAS  Google Scholar 

  20. Li, W.-J., Chou, S.-L., Wang, J.-Z., Liu, H.-K. & Dou, S.-X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 13, 5480–5484 (2013).

    Article  CAS  Google Scholar 

  21. Qian, J., Wu, X., Cao, Y., Ai, X. & Yang, H. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. Int. Ed. 125, 4731–4734 (2013).

    Article  Google Scholar 

  22. Kim, Y. et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 25, 3045–3049 (2013).

    Article  CAS  Google Scholar 

  23. Yabuuchi, N. et al. Phosphorus electrodes in sodium cells: small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem 1, 580–589 (2014).

    Article  Google Scholar 

  24. Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

    Article  Google Scholar 

  25. Hultgren, R., Gingrich, N. S. & Warren, B. E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3, 351–355 (1935).

    Article  CAS  Google Scholar 

  26. Nagao, M., Hayashi, A. & Tatsumisago, M. All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode. J. Power Sources 196, 6902–6905 (2011).

    Article  CAS  Google Scholar 

  27. Park, C.-M. & Sohn, H.-J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 19, 2465–2468 (2007).

    Article  CAS  Google Scholar 

  28. Sun, L.-Q. et al. Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J. Phys. Chem. C 116, 14772–14779 (2012).

    Article  CAS  Google Scholar 

  29. Sun, J. et al. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 14, 4573–4580 (2014).

    Article  CAS  Google Scholar 

  30. Ramireddy, T. et al. Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 3, 5572–5584 (2015).

    Article  CAS  Google Scholar 

  31. Yazami, R. & Universitaire, D. A reversible graphite–lithium electrochemical generators. J. Power Sources 9, 365–371 (1983).

    Article  CAS  Google Scholar 

  32. Wu, H. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotech. 7, 310–315 (2012).

    Article  CAS  Google Scholar 

  33. Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotech. 9, 187–192 (2014).

    Article  CAS  Google Scholar 

  34. Li, W. et al. High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl Acad. Sci. USA 110, 7148–7153 (2013).

    Article  CAS  Google Scholar 

  35. Ye, P. D. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  Google Scholar 

  36. Reich, E. S. Phosphorene excites materials scientists. Nature 506, 19 (2014).

    Article  Google Scholar 

  37. Churchill, H. O. H. & Jarillo-Herrero, P. Two-dimensional crystals: phosphorus joins the family. Nature Nanotech. 9, 330–331 (2014).

    Article  CAS  Google Scholar 

  38. Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  39. Mohiuddin, T. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).

    Article  Google Scholar 

  40. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  41. Brent, J. R. et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 50, 13338–13341 (2014).

    Article  CAS  Google Scholar 

  42. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  43. Sugai, S. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 53, 753–755 (1985).

    Article  CAS  Google Scholar 

  44. Vanderborgh, C. A. & Schiferl, D. Raman studies of black phosphorus from 0.25 to 7.7 GPa at 15 K. Phys. Rev. B 40, 9595–9599 (1989).

    Article  CAS  Google Scholar 

  45. Akahama, Y., Kobayashi, M. & Kawamura, H. Raman study of black phosphorus up to 13 GPa. Solid State Commun. 104, 311–315 (1997).

    Article  CAS  Google Scholar 

  46. Lu, W. et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853–859 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515. H.W.L. acknowledges support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology under NRF-2012R1A6A3A03038593.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and J.S. conceived and designed the experiments. J.S. performed sample fabrication, characterization and electrochemical measurements. H.W.L. participated in part of the experiments and conducted in situ TEM and HR-TEM characterization. J.S., M.P., H.W.L. and Y.C. co-wrote the paper. All authors discussed the results and commented on the manuscript. J.S. and H.W.L. contributed equally to this work.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8534 kb)

Supplementary information

Supplementary Movie 1 (MP4 8354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Lee, HW., Pasta, M. et al. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nature Nanotech 10, 980–985 (2015). https://doi.org/10.1038/nnano.2015.194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing