Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-throughput optical sensing of nucleic acids in a nanopore array

Abstract

Protein nanopores such as α-haemolysin and Mycobacterium smegmatis porin A (MspA) can be used to sequence long strands of DNA at low cost. To provide high-speed sequencing, large arrays of nanopores are required, but current nanopore sequencing methods rely on ionic current measurements from individually addressed pores and such methods are likely to prove difficult to scale up. Here we show that, by optically encoding the ionic flux through protein nanopores, the discrimination of nucleic acid sequences and the detection of sequence-specific nucleic acid hybridization events can be parallelized. We make optical recordings at a density of 104 nanopores per mm2 in a single droplet interface bilayer. Nanopore blockades can discriminate between DNAs with sub-picoampere equivalent resolution, and specific miRNA sequences can be identified by differences in unzipping kinetics. By creating an array of 2,500 bilayers with a micropatterned hydrogel chip, we are also able to load different samples into specific bilayers suitable for high-throughput nanopore recording.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical detection of DNA by αHL in a DIB.
Figure 2: Amplitude resolution of oSCR for DNA identification.
Figure 3: Optical discrimination of four nucleotides using the MspA M2 nanopore.
Figure 4: Detection of miRNA sequences by oSCR based on unzipping event duration.
Figure 5: High-throughput and multi-sample oSCR.

Similar content being viewed by others

References

  1. Mardis, E. R. Anticipating the $1,000 genome. Genome Biol. 7, 112 (2006).

    Article  Google Scholar 

  2. Bayley, H. Sequencing single molecules of DNA. Curr. Opin. Chem. Biol. 10, 628–637 (2006).

    Article  CAS  Google Scholar 

  3. Xuan, J. K., Yu, Y., Qing, T., Guo, L. & Shi, L. M. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 340, 284–295 (2013).

    Article  CAS  Google Scholar 

  4. Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  5. Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nature Nanotech. 6, 615–624 (2011).

    Article  CAS  Google Scholar 

  6. Huang, S. Nanopore-based sensing devices and applications to genome sequencing: a brief history and the missing pieces. Chin. Sci. Bull. 59, 4918–4928 (2014).

    Article  Google Scholar 

  7. Cockroft, S. L., Chu, J., Amorin, M. & Ghadiri, M. R. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130, 818–820 (2008).

    Article  CAS  Google Scholar 

  8. Chu, J., Gonzalez-Lopez, M., Cockroft, S. L., Amorin, M. & Ghadiri, M. R. Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore. Angew. Chem. Int. Ed. 49, 10106–10109 (2010).

    Article  CAS  Google Scholar 

  9. Lieberman, K. R. et al. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J. Am. Chem. Soc. 132, 17961–17972 (2010).

    Article  CAS  Google Scholar 

  10. Pennisi, E. DNA sequencers still waiting for the nanopore revolution. Science 343, 829–830 (2014).

    Article  CAS  Google Scholar 

  11. Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-angstrom precision. Nature Biotechnol. 30, 344–348 (2012).

    Article  CAS  Google Scholar 

  12. Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nature Biotechnol. 30, 349–353 (2012).

    Article  CAS  Google Scholar 

  13. Laszlo, A. H. et al. Decoding long nanopore sequencing reads of natural DNA. Nature Biotechnol. 32, 829–833 (2014).

    Article  CAS  Google Scholar 

  14. Bayley, H. Nanopore sequencing: from imagination to reality. Clin. Chem. 61, 25–31 (2015).

    Article  CAS  Google Scholar 

  15. Heron, A. J., Thompson, J. R., Cronin, B., Bayley, H. & Wallace, M. I. Simultaneous measurement of ionic current and fluorescence from single protein pores. J. Am. Chem. Soc. 131, 1652–1653 (2009).

    Article  CAS  Google Scholar 

  16. Bayley, H. et al. Droplet interface bilayers. Mol. Biosyst. 4, 1191–1208 (2008).

    Article  CAS  Google Scholar 

  17. Ivankin, A. et al. Label-free optical detection of biomolecular translocation through nanopore arrays. ACS Nano 8, 10774–10781 (2014).

    Article  CAS  Google Scholar 

  18. Anderson, B. N. et al. Probing solid-state nanopores with light for the detection of unlabeled analytes. ACS Nano 8, 11836–11845 (2014).

    Article  CAS  Google Scholar 

  19. Demuro, A. et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 280, 17294–17300 (2005).

    Article  CAS  Google Scholar 

  20. Zou, H., Lifshitz, L. M., Tuft, R. A., Fogarty, K. E. & Singer, J. J. Visualization of Ca2+ entry through single stretch-activated cation channels. Proc. Natl Acad. Sci. USA 99, 6404–6409 (2002).

    Article  CAS  Google Scholar 

  21. Wang, S. Q., Song, L. S., Lakatta, E. G. & Cheng, H. P. Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410, 592–596 (2001).

    Article  CAS  Google Scholar 

  22. Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA 106, 7702–7707 (2009).

    Article  CAS  Google Scholar 

  23. Wallace, E. V. B. et al. Identification of epigenetic DNA modifications with a protein nanopore. Chem. Commun. 46, 8195–8197 (2010).

    Article  CAS  Google Scholar 

  24. Derrington, I. M. et al. Nanopore DNA sequencing with MspA. Proc. Natl Acad. Sci. USA 107, 16060–16065 (2010).

    Article  CAS  Google Scholar 

  25. Manrao, E. A., Derrington, I. M., Pavlenok, M., Niederweis, M. & Gundlach, J. H. Nucleotide discrimination with DNA immobilized in the MspA nanopore. PLoS ONE 6, e25723 (2011).

    Article  CAS  Google Scholar 

  26. Butler, T. Z., Pavlenok, M., Derrington, I. M., Niederweis, M. & Gundlach, J. H. Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl Acad. Sci. USA 105, 20647–20652 (2008).

    Article  CAS  Google Scholar 

  27. Wang, Y., Zheng, D. L., Tan, Q. L., Wang, M. X. & Gu, L. Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nature Nanotech. 6, 668–674 (2011).

    Article  CAS  Google Scholar 

  28. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  Google Scholar 

  29. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  30. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    Article  CAS  Google Scholar 

  31. Gross, L. C. M., Castell, O. K. & Wallace, M. I. Dynamic and reversible control of 2D membrane protein concentration in a droplet interface bilayer. Nano Lett. 11, 3324–3328 (2011).

    Article  CAS  Google Scholar 

  32. Coskun, A. F., Su, T. W. & Ozcan, A. Wide field-of-view lens-free fluorescent imaging on a chip. Lab on a Chip 10, 824–827 (2010).

    Article  CAS  Google Scholar 

  33. Castell, O. K., Berridge, J. & Wallace, M. I. Quantification of membrane protein inhibition by optical ion flux in a droplet interface bilayer array. Angew. Chem. Int. Ed. 51, 3134–3138 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Aarts for cleanroom access, T. Sapra for cleanroom training and E. Mikhailova for protein preparation. This work was supported by funding from the US National Human Genome Research Institute (NHGRI), ‘$1000 Genome’ research grant R01 HG003709, ERC StG 106913, and Oxford Nanopore Technologies Ltd.

Author information

Authors and Affiliations

Authors

Contributions

S.H., M.R.R., O.C., H.B. and M.I.W. designed the experiments. S.H., M.R.R. and O.C. performed the experiments. S.H. wrote the data analysis package program for the measurements with αHL, and performed the related data analysis. M.I.W. designed the data analysis methodology for the measurements with MspA. M.R.R. performed the MspA-related data analysis. S.H. designed and wrote the spotting robot program for the hydrogel array. S.H., M.R.R., O.C., H.B. and M.I.W. wrote the paper.

Corresponding author

Correspondence to Mark I. Wallace.

Ethics declarations

Competing interests

H.B. is the founder, a director and a shareholder of Oxford Nanopore Technologies, a company engaged in the development of nanopore sensing and sequencing technologies. The work in this Article was supported in part by Oxford Nanopore Technologies. Methods developed by M.I.W. have been licensed by Oxford Nanopore Technologies.

Supplementary information

Supplementary information

Supplementary information (PDF 6080 kb)

Supplementary information

Supplementary Movie 1 (MOV 1977 kb)

Supplementary information

Supplementary Movie 2 (MOV 9693 kb)

Supplementary information

Supplementary Movie 3 (MP4 13996 kb)

Supplementary information

Supplementary Movie 4 (MOV 4801 kb)

Supplementary information

Supplementary Movie 5 (MOV 1804 kb)

Supplementary information

Supplementary Movie 6 (MOV 1089 kb)

Supplementary information

Supplementary Movie 7 (MOV 937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Romero-Ruiz, M., Castell, O. et al. High-throughput optical sensing of nucleic acids in a nanopore array. Nature Nanotech 10, 986–991 (2015). https://doi.org/10.1038/nnano.2015.189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing