Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy

Abstract

Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors1, semiconductors2,3,4 and ultrathin films5,6,7,8,9, but such single-defect electronic characterization remains an elusive goal for intrinsic bulk insulators. Here, we show that individual native defects in an intrinsic bulk hexagonal boron nitride insulator can be characterized and manipulated using a scanning tunnelling microscope. This would typically be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by using a graphene/boron nitride heterostructure, which exploits the atomically thin nature of graphene to allow the visualization of defect phenomena in the underlying bulk boron nitride. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunnelling spectroscopy we obtain charge and energy-level information for these boron nitride defect structures. We also show that it is possible to manipulate the defects through voltage pulses applied to the scanning tunnelling microscope tip.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STM topography and corresponding dI/dV map for a graphene/BN device.
Figure 2: dI/dV maps and spatially dependent dI/dV spectroscopy determining the defect charge state.
Figure 3: dI/dV maps of ring defect enable energy-level characterization.
Figure 4: Manipulating defects in BN with an STM tip.

Similar content being viewed by others

References

  1. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  CAS  Google Scholar 

  2. Feenstra, R. M., Woodall, J. M. & Pettit, G. D. Observation of bulk defects by scanning tunneling microscopy and spectroscopy: arsenic antisite defects in GaAs. Phys. Rev. Lett. 71, 1176–1179 (1993).

    Article  CAS  Google Scholar 

  3. Teichmann, K. et al. Controlled charge switching on a single donor with a scanning tunneling microscope. Phys. Rev. Lett. 101, 076103 (2008).

    Article  CAS  Google Scholar 

  4. Lee, D. H. & Gupta, J. A. Tunable field control over the binding energy of single dopants by a charged vacancy in GaAs. Science 330, 1807–1810 (2010).

    Article  CAS  Google Scholar 

  5. Repp, J., Meyer, G., Olsson, F. E. & Persson, M. Controlling the charge state of individual gold adatoms. Science 305, 493–495 (2004).

    Article  CAS  Google Scholar 

  6. Pradhan, N. A., Liu, N. & Ho, W. Vibronic spectroscopy of single C60 molecules and monolayers with the STM. J. Phys. Chem. B 109, 8513–8518 (2005).

    Article  CAS  Google Scholar 

  7. Avouris, P. & Wolkow, R. Scanning tunneling microscopy of insulators: CaF2 epitaxy on Si(111). Appl. Phys. Lett. 55, 1074–1076 (1989).

    Article  CAS  Google Scholar 

  8. Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Scanning tunneling spectroscopy of Cl vacancies in NaCl films: strong electron–phonon coupling in double-barrier tunneling junctions. Phys. Rev. Lett. 95, 225503 (2005).

    Article  Google Scholar 

  9. Choi, T., Ruggiero, C. D. & Gupta, J. A. Incommensurability and atomic structure of c(2×2)N/Cu(100): a scanning tunneling microscopy study. Phys. Rev. B 78, 035430 (2008).

    Article  Google Scholar 

  10. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  11. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  CAS  Google Scholar 

  12. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater. 3, 404–409 (2004).

    Article  CAS  Google Scholar 

  13. Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. Growth 303, 525–529 (2007).

    Article  CAS  Google Scholar 

  14. Remes, Z., Nesladek, M., Haenen, K., Watanabe, K. & Taniguchi, T. The optical absorption and photoconductivity spectra of hexagonal boron nitride single crystals. Phys. Status Solidi A 202, 2229–2233 (2005).

    Article  CAS  Google Scholar 

  15. Ju, L. et al. Photoinduced doping in heterostructures of graphene and boron nitride. Nature Nanotech. 9, 348–352 (2014).

    Article  CAS  Google Scholar 

  16. Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Mater. 10, 282–285 (2011).

    Article  CAS  Google Scholar 

  17. Decker, R. G. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).

    Article  CAS  Google Scholar 

  18. Zhang, Y. et al. Giant phonon-induced conductance in scanning tunneling spectroscopy of gate-tunable graphene. Nature Phys. 4, 627–630 (2008).

    Article  CAS  Google Scholar 

  19. Wang, Y. et al. Mapping Dirac quasiparticles near a single Coulomb impurity on graphene. Nature Phys. 8, 653–657 (2012).

    Article  CAS  Google Scholar 

  20. Wang, Y. et al. Observing atomic collapse resonances in artificial nuclei on graphene. Science 340, 734–737 (2013).

    Article  CAS  Google Scholar 

  21. Brar, V. W. et al. Gate-controlled ionization and screening of cobalt adatoms on a graphene surface. Nature Phys. 7, 43–47 (2011).

    Article  CAS  Google Scholar 

  22. Scheffler, M. et al. Probing local hydrogen impurities in quasi-free-standing graphene. ACS Nano 6, 10590–10597 (2012).

    Article  CAS  Google Scholar 

  23. Fanciulli, M. & Moustakas, T. D. Study of defects in wide band gap semiconductors by electron paramagnetic resonance. Physica B 185, 228–233 (1993).

    Article  CAS  Google Scholar 

  24. Katzir, A., Suss, J. T., Zunger, A. & Halperin, A. Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements. Phys. Rev. B 11, 2370–2377 (1975).

    Article  CAS  Google Scholar 

  25. Andrei, E. Y., Katzir, A. & Suss, J. T. Point defects in hexagonal boron nitride. III. EPR in electron-irradiated BN. Phys. Rev. B 13, 2831–2834 (1976).

    Article  CAS  Google Scholar 

  26. Zunger, A. & Katzir, A. Point defects in hexagonal boron nitride. II. Theoretical studies. Phys. Rev. B 11, 2378–2390 (1975).

    Article  CAS  Google Scholar 

  27. Attaccalite, C., Bockstedte, M., Marini, A., Rubio, A. & Wirtz, L. Coupling of excitons and defect states in boron-nitride nanostructures. Phys. Rev. B 83, 144115 (2011).

    Article  Google Scholar 

  28. Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article  CAS  Google Scholar 

  29. Woodside, M. T. & McEuen, P. L. Scanned probe imaging of single-electron charge states in nanotube quantum dots. Science 296, 1098–1101 (2002).

    Article  CAS  Google Scholar 

  30. Pradhan, N. A., Liu, N., Silien, C. & Ho, W. Atomic scale conductance induced by single impurity charging. Phys. Rev. Lett. 94, 076801 (2005).

    Article  CAS  Google Scholar 

  31. Kharche, N. & Nayak, S. K. Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett. 11, 5274–5278 (2011).

    Article  CAS  Google Scholar 

  32. Garleff, J. K., Wijnheijmer, A. P., v. d. Enden, C. N. & Koenraad, P. M. Bistable behavior of silicon atoms in the (110) surface of gallium arsenide. Phys. Rev. B 84, 075459 (2011).

    Article  Google Scholar 

  33. Zomer, P. J., Dash, S. P., Tombros, N. & van Wees, B. J. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104–232107 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank P. Jarillo-Herrero, N. Gabor, A. Young, P. Yu and A. Rubio for discussions. This research was supported by the sp2 programme (STM measurement and device fabrication) and the LBNL Molecular Foundry (graphene growth characterization) funded by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy (contract no. DE-AC02-05CH11231). Support was also provided by National Science Foundation award CMMI-1235361 (device characterization, image analysis). J.V.J. acknowledges support from the UC President's Postdoctoral Fellowship. D.W. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. S.K. acknowledges support from the Qualcomm Scholars Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

L.J. and J.V.J. conceived the work and designed the research strategy. J.V.J., D.W., S.K. and J.L. performed data analysis. J.V.J., S.K., L.J. and A.Z. facilitated sample fabrication. D.W., J.L. and J.V.J. carried out STM/ scanning tunnelling spectroscopy (STS) measurements. J.V.J. and S.K. carried out electron transport measurements. K.W. and T.T. synthesized the hBN samples. D.W., J.V.J. and L.J. formulated the theoretical model with advice from F.W. and M.F.C. M.F.C. supervised the STM/STS experiments. J.V.J., D.W. and M.F.C. co-wrote the manuscript. J.V.J. and M.F.C. coordinated the collaboration. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Michael F. Crommie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4623 kb)

Supplementary Movie

Supplementary Movie (MP4 12264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, D., Velasco, J., Ju, L. et al. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy. Nature Nanotech 10, 949–953 (2015). https://doi.org/10.1038/nnano.2015.188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing