Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission

Abstract

Metasurfaces are planar structures that locally modify the polarization, phase and amplitude of light in reflection or transmission, thus enabling lithographically patterned flat optical components with functionalities controlled by design1,2. Transmissive metasurfaces are especially important, as most optical systems used in practice operate in transmission. Several types of transmissive metasurface have been realized3,4,5,6, but with either low transmission efficiencies or limited control over polarization and phase. Here, we show a metasurface platform based on high-contrast dielectric elliptical nanoposts that provides complete control of polarization and phase with subwavelength spatial resolution and an experimentally measured efficiency ranging from 72% to 97%, depending on the exact design. Such complete control enables the realization of most free-space transmissive optical elements such as lenses, phase plates, wave plates, polarizers, beamsplitters, as well as polarization-switchable phase holograms and arbitrary vector beam generators using the same metamaterial platform.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Illustration of the proposed metasurface for complete polarization and phase control.
Figure 2: Birefringence of the elliptical post arrays.
Figure 3: Equivalence of the array and post rotations.
Figure 4: Devices for independent control of two polarizations.
Figure 5: Devices for highly efficient vector beam generation.

References

  1. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  2. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

    CAS  Article  Google Scholar 

  3. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    CAS  Article  Google Scholar 

  4. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    CAS  Article  Google Scholar 

  5. Lin, J., Genevet, P., Kats, M. A., Antoniou, N. & Capasso, F. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett. 13, 4269–4274 (2013).

    CAS  Article  Google Scholar 

  6. Vo, S. et al. Sub-wavelength grating lenses with a twist. IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).

    Article  Google Scholar 

  7. Monticone, F., Estakhri, N. M. & Alù, A. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 110, 203903 (2013).

    Article  Google Scholar 

  8. Arbabi, A. & Faraon, A. Fundamental limits of ultrathin metasurfaces. Preprint at http://arXiv.org/abs/1411.2537 (2014).

  9. Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).

    CAS  Article  Google Scholar 

  10. Pfeiffer, C. & Grbic, A. Cascaded metasurfaces for complete phase and polarization control. Appl. Phys. Lett. 102, 231116 (2013).

    Article  Google Scholar 

  11. Fattal, D., Li, J., Peng, Z., Fiorentino, M. & Beausoleil, R. G. Flat dielectric grating reflectors with focusing abilities. Nature Photon. 4, 466–470 (2010).

    CAS  Article  Google Scholar 

  12. Lu, F., Sedgwick, F. G., Karagodsky, V., Chase, C. & Chang-Hasnain, C. J. Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt. Express 18, 12606–12614 (2010).

    CAS  Article  Google Scholar 

  13. Klemm, A. B. et al. Experimental high numerical aperture focusing with high contrast gratings. Opt. Lett. 38, 3410–3413 (2013).

    Article  Google Scholar 

  14. Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    CAS  Article  Google Scholar 

  15. Warren, M., Smith, R., Vawter, G. & Wendt, J. High-efficiency subwavelength diffractive optical element in GaAs for 975 nm. Opt. Lett. 20, 1441–1443 (1995).

    CAS  Article  Google Scholar 

  16. Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16, 1143–1156 (1999).

    Article  Google Scholar 

  17. Arbabi, A. et al. Controlling the phase front of optical fiber beams using high contrast metastructures. OSA Technical Digest, STu3M.4 (Optical Society of America, 2014).

    Google Scholar 

  18. Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high contrast transmitarrays. Nature Commun. 6, 7069 (2015).

    CAS  Article  Google Scholar 

  19. West, P. R. et al. All-dielectric subwavelength metasurface focusing lens. Opt. Express 22, 26212 (2014).

    Article  Google Scholar 

  20. Decker, M. et al. High-efficiency dielectric Huygens surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

    CAS  Article  Google Scholar 

  21. Kikuta, H., Ohira, Y. & Iwata, K. Achromatic quarter-wave plates using the dispersion of form birefringence. Appl. Opt. 36, 1566–1572 (1997).

    CAS  Article  Google Scholar 

  22. Schonbrun, E., Seo, K. & Crozier, K. B. Reconfigurable imaging systems using elliptical nanowires. Nano Lett. 11, 4299–4303 (2011).

    CAS  Article  Google Scholar 

  23. Yang, Y. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014).

    CAS  Article  Google Scholar 

  24. Mutlu, M., Akosman, A. E., Kurt, G., Gokkavas, M. & Ozbay, E. Experimental realization of a high-contrast grating based broadband quarter-wave plate. Opt. Express 20, 27966–27973 (2012).

    Article  Google Scholar 

  25. Zhao, Y., Belkin, M. A. & Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nature Commun. 3, 870 (2012).

    CAS  Article  Google Scholar 

  26. García-Etxarri, A. et al. Strong magnetic response of submicron silicon particles in the infrared. Opt. Express 19, 4815–4826 (2011).

    Article  Google Scholar 

  27. Evlyukhin, A. B., Reinhardt, C. & Chichkov, B. N. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B 84, 235429 (2011).

    Article  Google Scholar 

  28. Spinelli, P., Verschuuren, M. A. & Polman, A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nature Commun. 3, 692 (2012).

    CAS  Article  Google Scholar 

  29. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009).

    CAS  Article  Google Scholar 

  30. Phelan, C. F., Donegan, J. F. & Lunney, J. G. Generation of a radially polarized light beam using internal conical diffraction. Opt. Express 19, 21793–21802 (2011).

    CAS  Article  Google Scholar 

  31. Kozawa, Y. & Sato, S. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt. Lett. 30, 3063 (2005).

    CAS  Article  Google Scholar 

  32. Swanson, G. J. Binary optics technology: the theory and design of multi-level diffractive optical elements. Technical Report 845 (Massachusetts Institute of Technology, DTIC, 1989).

  33. Liu, V. & Fan, S. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233–2244 (2012).

    CAS  Article  Google Scholar 

  34. Born, M. & Wolf, E. Principles of Optics (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Caltech/JPL President and Director Fund (PDF) and the Defense Advanced Research Projects Agency (DARPA). Y.H. was supported as part of the Department of Energy (DOE) ‘Light–Material Interactions in Energy Conversion’ Energy Frontier Research Centre under grant no. DE-SC0001293 and a Japan Student Services Organization (JASSO) fellowship. Device nanofabrication was performed at the Kavli Nanoscience Institute at Caltech. The authors thank D. Fattal and C. Santori for discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.A. and A.F. conceived the experiment. A.A., Y.H. and M.B. fabricated the samples. A.A. performed the simulations, measurements and analysed the data. A.A. and A.F. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Andrei Faraon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 467 kb)

Supplementary information

Supplementary Movie 1 (MOV 443 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arbabi, A., Horie, Y., Bagheri, M. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotech 10, 937–943 (2015). https://doi.org/10.1038/nnano.2015.186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.186

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research