Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots

Abstract

Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I–III–VI2 semiconductors to realize the first large-area quantum dot–luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2–x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Concept of a reabsorption-free colourless LSC based on CISeS quantum dots.
Figure 2: Quantum dot–polymer nanocomposites.
Figure 3: Experimental evaluation of reabsorption losses in LSCs based on CISeS quantum dots.
Figure 4: Colorimetry characterization of LSCs based on CISeS quantum dots.
Figure 5: Origin of the Stokes shift in I–III–VI2 quantum dots.

References

  1. Debije, M. G. & Verbunt, P. P. C. Solar concentrators: thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energ. Mater. 2, 12–35 (2012).

    Article  CAS  Google Scholar 

  2. Currie, M. J., Mapel, J. K., Heidel, T. D., Goffri, S. & Baldo, M. A. High-efficiency organic solar concentrators for photovoltaics. Science 321, 226–228 (2008).

    Article  CAS  Google Scholar 

  3. Rau, U., Einsele, F. & Glaeser, G. C. Efficiency limits of photovoltaic fluorescent collectors. Appl. Phys. Lett. 87, 171101 (2005).

    Article  Google Scholar 

  4. Van Sark, W. G. J. H. M. et al. Luminescent solar concentrators—a review of recent results. Opt. Express 16, 21773–21792 (2008).

    Article  CAS  Google Scholar 

  5. Zhao, Y., Meek, G. A., Levine, B. G. & Lunt, R. R. Near-infrared harvesting transparent luminescent solar concentrators. Adv. Opt. Mater. 2, 606–611 (2014).

    Article  CAS  Google Scholar 

  6. Giebink, N. C., Wiederrecht, G. P. & Wasielewski, M. R. Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators. Nature Photon. 5, 694–701 (2011).

    Article  CAS  Google Scholar 

  7. Desmet, L., Ras, A. J. M., de Boer, D. K. G. & Debije, M. G. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency. Opt. Lett. 37, 3087–3089 (2012).

    Article  CAS  Google Scholar 

  8. Wang, T. et al. Luminescent solar concentrator employing rare earth complex with zero self-absorption loss. Sol. Energy 85, 2571–2579 (2011).

    Article  CAS  Google Scholar 

  9. Debije, M. G. et al. Promising fluorescent dye for solar energy conversion based on a perylene perinone. Appl. Opt. 50, 163–169 (2011).

    Article  CAS  Google Scholar 

  10. Krumer, Z. et al. Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots. Sol. Energy Mater. Sol. Cell 111, 57–65 (2013).

    Article  CAS  Google Scholar 

  11. Bomm, J. et al. Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators. Sol. Energy Mater. Sol. Cell. 95, 2087–2094 (2011).

    Article  CAS  Google Scholar 

  12. Chatten, A. J., Barnham, K. W. J., Buxton, B. F., Ekins-Daukes, N. J. & Malik, M. A. Quantum dot solar concentrators. Semiconductors 38, 909–917 (2004).

    Article  CAS  Google Scholar 

  13. Gallagher, S. J., Norton, B. & Eames, P. C. Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices. Sol. Energy 81, 813–821 (2007).

    Article  CAS  Google Scholar 

  14. Purcell-Milton, F. & Gun'ko, Y. K. Quantum dots for luminescent solar concentrators. J. Mater. Chem. 22, 16687–16697 (2012).

    Article  CAS  Google Scholar 

  15. Meinardi, F. et al. Large area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass polymerized PMMA matrix. Nature Photon. 8, 392–399 (2014).

    Article  CAS  Google Scholar 

  16. Bradshaw, L. R., Knowles, K. E., McDowall, S. & Gamelin, D. R. Nanocrystals for luminescent solar concentrators. Nano Lett. 15, 1315–1323 (2015).

    Article  CAS  Google Scholar 

  17. Erickson, C. S. et al. Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 8, 3461–3467 (2014).

    Article  CAS  Google Scholar 

  18. Coropceanu, I. & Bawendi, M. G. Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. Nano Lett. 14, 4097–4101 (2014).

    Article  CAS  Google Scholar 

  19. Cirloganu, C. M. et al. Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nature Commun. 5, 4148 (2014).

    Article  CAS  Google Scholar 

  20. Lin, Q. et al. Design and synthesis of heterostructured quantum dots with dual emission in the visible and infrared. ACS Nano 9, 539–547 (2015).

    Article  CAS  Google Scholar 

  21. Aldakov, D., Lefrancois, A. & Reiss, P. Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C 1, 3756–3776 (2013).

    Article  CAS  Google Scholar 

  22. Kolny-Olesiak, J. & Weller, H. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 5, 12221–12237 (2013).

    Article  CAS  Google Scholar 

  23. Li, L. et al. Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J. Am. Chem. Soc. 133, 1176–1179 (2011).

    Article  CAS  Google Scholar 

  24. Akkerman, Q. A. et al. From binary Cu2S to ternary Cu–In–S and quaternary Cu–In–Zn–S nanocrystals with tunable composition via partial cation exchange. ACS Nano 9, 521–531 (2015).

    Article  CAS  Google Scholar 

  25. Zhong, H. et al. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS Nano 4, 5253–5262 (2010).

    Article  CAS  Google Scholar 

  26. McDaniel, H., Fuke, N., Makarov, N. S., Pietryga, J. M. & Klimov, V. I. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells. Nature Commun. 4, 2887 (2013).

    Article  Google Scholar 

  27. McDaniel, H., Fuke, N., Pietryga, J. M. & Klimov, V. I. Engineered CuInSexS2–x quantum dots for sensitized solar cells. J. Chem. Phys. Lett. 4, 355–361 (2013).

    Article  CAS  Google Scholar 

  28. Yarema, O. et al. Highly luminescent, size- and shape-tunable copper indium selenide based colloidal nanocrystals. Chem. Mater. 25, 3753–3757 (2013).

    Article  CAS  Google Scholar 

  29. McDaniel, H. et al. Simple yet versatile synthesis of CuInSexS2–x quantum dots for sunlight harvesting. J. Phys, Chem. C 118, 16987–16994 (2014).

    Article  CAS  Google Scholar 

  30. Panthani, M. G. et al. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1–x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics. J. Am. Chem. Soc. 130, 16770–16777 (2008).

    Article  CAS  Google Scholar 

  31. García-Santamaría, F. et al. Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core–shell interface. Nano Lett. 11, 687–693 (2011).

    Article  Google Scholar 

  32. Stewart, J. T. et al. Comparison of carrier multiplication yields in PbS and PbSe nanocrystals: the role of competing energy-loss processes. Nano Lett. 12, 622–628 (2011).

    Article  Google Scholar 

  33. Semonin, O. E. et al. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J. Chem. Phys. Lett. 1, 2445–2450 (2010).

    Article  CAS  Google Scholar 

  34. Chen, B. et al. Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance. Adv. Funct. Mater. 22, 2081–2088 (2012).

    Article  CAS  Google Scholar 

  35. De Trizio, L. et al. Strongly fluorescent quaternary Cu–In–Zn–S nanocrystals prepared from Cu1–xInS2 nanocrystals by partial cation exchange. Chem. Mater. 24, 2400–2406 (2012).

    Article  CAS  Google Scholar 

  36. Bomm, J. et al. Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites. Beilstein J. Nanotechnol. 1, 94–100 (2010).

    Article  CAS  Google Scholar 

  37. Bronstein, N. D. et al. Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. ACS Nano 8, 44–53 (2013).

    Article  Google Scholar 

  38. Shcherbatyuk, G. V., Inman, R. H., Wang, C., Winston, R. & Ghosh, S. Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators. Appl. Phys. Lett. 96, 191901 (2010).

    Article  Google Scholar 

  39. Slooff, L. H. et al. A luminescent solar concentrator with 7.1% power conversion efficiency. Phys. Status Solidi Rapid Res. Lett. 2, 257–259 (2008).

    Article  CAS  Google Scholar 

  40. Hunter, R. S. Photoelectric color-difference meter. J. Opt. Soc. Am. 38, 985–993 (1948).

    Google Scholar 

  41. Witt, E. & Kolny-Olesiak, J. Recent developments in colloidal synthesis of CuInSe2 nanoparticles. Chem. Eur. J. 19, 9746–9753 (2013).

    Article  CAS  Google Scholar 

  42. Rice, W. D., McDaniel, H., Klimov, V. I. & Crooker, S. A. Magneto-optical properties of CuInS2 nanocrystals. J. Chem. Phys. Lett. 5, 4105–4109 (2014).

    Article  CAS  Google Scholar 

  43. Meier, C., Gondorf, A., Lüttjohann, S., Lorke, A. & Wiggers, H. Silicon nanoparticles: absorption, emission, and the nature of the electronic bandgap. J. Appl. Phys. 101, 103112 (2007).

    Article  Google Scholar 

  44. Lee, D. C. et al. Colloidal synthesis of infrared-emitting germanium nanocrystals. J. Am. Chem. Soc. 131, 3436–3437 (2009).

    Article  CAS  Google Scholar 

  45. Kim, S., Fisher, B., Eisler, H.-J. & Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003).

    Article  CAS  Google Scholar 

  46. Viswanatha, R., Brovelli, S., Pandey, A., Crooker, S. A. & Klimov, V. I. Copper-doped inverted core/shell nanocrystals with ‘permanent’ optically active holes. Nano Lett. 11, 4753–4758 (2011).

    Article  CAS  Google Scholar 

  47. Pandey, A. et al. Long-lived photoinduced magnetization in copper-doped ZnSe–CdSe core–shell nanocrystals. Nature Nanotech. 7, 792–797 (2012).

    Article  CAS  Google Scholar 

  48. Binsma, J. J. M., Giling, L. J. & Bloem, J. Luminescence of CuInS2: I. The broad band emission and its dependence on the defect chemistry. J. Lumin. 27, 35–53 (1982).

    Article  CAS  Google Scholar 

  49. Şahin, D., Ilan, B. & Kelley, D. F. Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles. J. Appl. Phys. 110, 033108 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

S.B. and F.M. acknowledge support from the Cariplo Foundation (2012-0844). V.I.K., H.M., K.A.V. and N.S.M. were supported by the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, Office of Science, US Department of Energy. S.B. acknowledges financial support from the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 324603 (EDONHIST). The authors thank M. Acciarri and the staff of the MIB-SOLAR laboratory for technical assistance in the quantitative studies of solar concentration and L. Raimondo and V. Pinchetti for assistance with the colorimetric analysis.

Author information

Authors and Affiliations

Authors

Contributions

The experiment designs were the result of ongoing interactions and discussions between F.M., V.I.K. and S.B. H.M. optimized and synthesized the quantum dots. F.C. fabricated the quantum dot–polymer nanocomposites with the assistance of S.B., A.C. and R.S. S.B., F.M., H.M. and V.I.K. planned the experiments. F.C., F.M. and S.B. performed the spectroscopic experiments and characterized the LSCs. K.A.V. performed the Monte Carlo simulations. S.B. and F.M. performed the colorimetric analysis. N.S.M. performed the transient absorption measurement. F.M., V.I.K. and S.B. wrote the paper, in consultation with all the authors.

Corresponding authors

Correspondence to Francesco Meinardi, Victor I. Klimov or Sergio Brovelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 970 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meinardi, F., McDaniel, H., Carulli, F. et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nature Nanotech 10, 878–885 (2015). https://doi.org/10.1038/nnano.2015.178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.178

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research