Letter | Published:

Three-terminal energy harvester with coupled quantum dots

Nature Nanotechnology volume 10, pages 854858 (2015) | Download Citation

Abstract

Rectification of thermal fluctuations in mesoscopic conductors is the key idea behind recent attempts to build nanoscale thermoelectric energy harvesters to convert heat into useful electric power1,2,3. So far, most concepts have made use of the Seebeck effect in a two-terminal geometry4,5,6,7,8, where heat and charge are both carried by the same particles. Here, we experimentally demonstrate the working principle of a new kind of energy harvester, proposed recently9, using two capacitively coupled quantum dots. We show that, due to the novel three-terminal design of our device, which spatially separates the heat reservoir from the conductor circuit, the directions of charge and heat flow become decoupled. This enables us to manipulate the direction of the generated charge current by means of external gate voltages while leaving the direction of heat flow unaffected. Our results pave the way for a new generation of multi-terminal nanoscale heat engines.

  • Subscribe to Nature Nanotechnology for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Beyond the battery. Nature Nanotech. 3, 71–72 (2008).

  2. 2.

    & The best thermoelectric. Proc. Natl Acad. Sci. USA 93, 7436–7439 (1996).

  3. 3.

    & Energy harvesting: an integrated view of materials, devices and applications. Nanotechnology 23, 502001 (2012).

  4. 4.

    Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011).

  5. 5.

    & Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94, 096601 (2005).

  6. 6.

    & Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993).

  7. 7.

    Nonlinear thermoelectricity in point contacts at pinch off: a catastrophe aids cooling. Phys. Rev. B 88, 064302 (2013).

  8. 8.

    , , & Thermoelectric performance of a driven double quantum dot. Phys. Rev. B 87, 245423 (2013).

  9. 9.

    & Optimal energy quanta to current conversion. Phys. Rev. B. 83, 085428 (2011).

  10. 10.

    & Observation of Anderson localization in an electron gas. Phys. Rev. 181, 1336–1340 (1969).

  11. 11.

    & Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys. Rev. B 33, 551–558 (1986).

  12. 12.

    & Theory of the thermopower of a quantum dot. Phys. Rev. B 46, 9667–9676 (1992).

  13. 13.

    , , , & Quantum oscillations in the transverse voltage of a channel in the nonlinear transport regime. Phys. Rev. Lett. 65, 1052 (1990).

  14. 14.

    , & Three-terminal thermoelectric transport through a molecular junction. Phys. Rev. B 82, 115314 (2010).

  15. 15.

    & Thermoelectric transport of mesoscopic conductors coupled to voltage and thermal probes. Phys. Rev. B 84, 201307(R) (2011).

  16. 16.

    , & Thermoelectric three-terminal hopping transport through one-dimensional nanosystems. Phys. Rev. B 85, 075412 (2012).

  17. 17.

    , , & Rectification of thermal fluctuations in a chaotic cavity heat engine. Phys. Rev. B 85, 205301 (2012).

  18. 18.

    , , & Powerful and efficient energy harvester with resonant-tunneling quantum dots. Phys. Rev. B 87, 075312 (2013).

  19. 19.

    , , , & Hybrid microwave-cavity heat engine. Phys. Rev. Lett. 112, 076803 (2014).

  20. 20.

    , & Strong bounds on Onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field. Phys. Rev. Lett. 110, 070603 (2013).

  21. 21.

    , & Scaling of the Coulomb energy due to quantum fluctuations in the charge on a quantum dot. Phys. Rev. Lett. 75, 4282 (1995).

  22. 22.

    et al. Energy-dependent tunneling in a quantum dot. Phys. Rev. Lett. 98, 036802 (2007).

  23. 23.

    et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002).

  24. 24.

    et al. Thermal gating of charge currents with Coulomb coupled quantum dots. Preprint at (2015).

  25. 25.

    , , , & Thermometer for the 2D electron gas using 1D thermopower. Phys. Rev. Lett. 81, 3491 (1998).

Download references

Acknowledgements

The authors thank M. Büttiker for drawing our attention to the subject. The authors also thank C. Thienel for discussions and L. Maier for help with device fabrication. This work was supported by the Deutsche Forschungsgemeinschaft via SPP1386, the Swiss National Science Foundation, the Spanish MICINN Juan de la Cierva programme and MAT2014-58241-P, COST Action MP1209.

Author information

Author notes

    • Holger Thierschmann

    Present address: Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

Affiliations

  1. Physikalisches Institut (EP3), Universität Würzburg, Am Hubland, Würzburg D-97074, Germany

    • Holger Thierschmann
    • , Fabian Arnold
    • , Hartmut Buhmann
    •  & Laurens W. Molenkamp
  2. Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, Madrid 28049, Spain

    • Rafael Sánchez
  3. Département de Physique Théorique, Université de Genève, Genève 4 CH-1211, Switzerland

    • Björn Sothmann
  4. Institute of Applied Physics, University of Hamburg, Jungiusstrasse 11, Hamburg D-20355, Germany

    • Christian Heyn
    •  & Wolfgang Hansen

Authors

  1. Search for Holger Thierschmann in:

  2. Search for Rafael Sánchez in:

  3. Search for Björn Sothmann in:

  4. Search for Fabian Arnold in:

  5. Search for Christian Heyn in:

  6. Search for Wolfgang Hansen in:

  7. Search for Hartmut Buhmann in:

  8. Search for Laurens W. Molenkamp in:

Contributions

H.T., H.B. and L.W.M. designed the experiment. C.H. and W.H. provided the wafer material. F.A. fabricated the sample. H.T. and F.A. conducted the measurements. R.S. and B.S. performed the model calculations. All authors discussed the results. H.T., B.S., R.S., H.B. and L.W.M. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Holger Thierschmann or Laurens W. Molenkamp.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2015.176

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.