Three-terminal energy harvester with coupled quantum dots

Abstract

Rectification of thermal fluctuations in mesoscopic conductors is the key idea behind recent attempts to build nanoscale thermoelectric energy harvesters to convert heat into useful electric power1,2,3. So far, most concepts have made use of the Seebeck effect in a two-terminal geometry4,5,6,7,8, where heat and charge are both carried by the same particles. Here, we experimentally demonstrate the working principle of a new kind of energy harvester, proposed recently9, using two capacitively coupled quantum dots. We show that, due to the novel three-terminal design of our device, which spatially separates the heat reservoir from the conductor circuit, the directions of charge and heat flow become decoupled. This enables us to manipulate the direction of the generated charge current by means of external gate voltages while leaving the direction of heat flow unaffected. Our results pave the way for a new generation of multi-terminal nanoscale heat engines.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Operating principle of the energy harvester.
Figure 2: Energy harvester device layout and characterization.
Figure 3: 2f current in reservoir R (IR) for configuration A in the vicinity of a TP pair.
Figure 4: 2f current in reservoir R (IR) for various Λ.

References

  1. 1

    White, B. E. Beyond the battery. Nature Nanotech. 3, 71–72 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Mahan, G. D. & Sofo, J. O. The best thermoelectric. Proc. Natl Acad. Sci. USA 93, 7436–7439 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Radousky, H. B. & Liang, H. Energy harvesting: an integrated view of materials, devices and applications. Nanotechnology 23, 502001 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Humphrey, T. & Linke, H. Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94, 096601 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Hicks, L. & Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Whitney, R. S. Nonlinear thermoelectricity in point contacts at pinch off: a catastrophe aids cooling. Phys. Rev. B 88, 064302 (2013).

    Article  Google Scholar 

  8. 8

    Juergens, S., Haupt, F., Moskalets, M. & Splettstoesser, J. Thermoelectric performance of a driven double quantum dot. Phys. Rev. B 87, 245423 (2013).

    Article  Google Scholar 

  9. 9

    Sánchez, R. & Büttiker, M. Optimal energy quanta to current conversion. Phys. Rev. B. 83, 085428 (2011).

    Article  Google Scholar 

  10. 10

    Cutler, M. & Mott, N. F. Observation of Anderson localization in an electron gas. Phys. Rev. 181, 1336–1340 (1969).

    CAS  Article  Google Scholar 

  11. 11

    Sivan, U. & Imry, Y. Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys. Rev. B 33, 551–558 (1986).

    CAS  Article  Google Scholar 

  12. 12

    Beenakker, C. W. J. & Staring, A. A. M. Theory of the thermopower of a quantum dot. Phys. Rev. B 46, 9667–9676 (1992).

    CAS  Article  Google Scholar 

  13. 13

    Molenkamp, L. W., Van Houten, H., Beenakker, C. W. J., Eppenga, R. & Foxon, C. T. Quantum oscillations in the transverse voltage of a channel in the nonlinear transport regime. Phys. Rev. Lett. 65, 1052 (1990).

    CAS  Article  Google Scholar 

  14. 14

    Entin-Wohlman, O., Imry, Y. & Aharony, A. Three-terminal thermoelectric transport through a molecular junction. Phys. Rev. B 82, 115314 (2010).

    Article  Google Scholar 

  15. 15

    Sánchez, D. & Serra, L. Thermoelectric transport of mesoscopic conductors coupled to voltage and thermal probes. Phys. Rev. B 84, 201307(R) (2011).

    Article  Google Scholar 

  16. 16

    Jiang, J.-H., Entin-Wohlman, O. & Imry, Y. Thermoelectric three-terminal hopping transport through one-dimensional nanosystems. Phys. Rev. B 85, 075412 (2012).

    Article  Google Scholar 

  17. 17

    Sothmann, B., Sánchez, R., Jordan, A. N. & Büttiker, M. Rectification of thermal fluctuations in a chaotic cavity heat engine. Phys. Rev. B 85, 205301 (2012).

    Article  Google Scholar 

  18. 18

    Jordan, A. N., Sothmann, B., Sánchez, R. & Büttiker, M. Powerful and efficient energy harvester with resonant-tunneling quantum dots. Phys. Rev. B 87, 075312 (2013).

    Article  Google Scholar 

  19. 19

    Bergenfeldt, C., Samuelsson, P., Sothmann, B., Flindt, C. & Büttiker, M. Hybrid microwave-cavity heat engine. Phys. Rev. Lett. 112, 076803 (2014).

    Article  Google Scholar 

  20. 20

    Brandner, K., Saito, K. & Seifert, U. Strong bounds on Onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field. Phys. Rev. Lett. 110, 070603 (2013).

    Article  Google Scholar 

  21. 21

    Molenkamp, L. W., Flensberg, K. & Kemerink, M. Scaling of the Coulomb energy due to quantum fluctuations in the charge on a quantum dot. Phys. Rev. Lett. 75, 4282 (1995).

    CAS  Article  Google Scholar 

  22. 22

    MacLean, K. et al. Energy-dependent tunneling in a quantum dot. Phys. Rev. Lett. 98, 036802 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002).

    Article  Google Scholar 

  24. 24

    Thierschmann, H. et al. Thermal gating of charge currents with Coulomb coupled quantum dots. Preprint at http://arXiv/abs/1502.03021 (2015).

  25. 25

    Appleyard, N. J., Nicholls, J. T., Simmons, M. Y., Tribe, W. R. & Pepper, M. Thermometer for the 2D electron gas using 1D thermopower. Phys. Rev. Lett. 81, 3491 (1998).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Büttiker for drawing our attention to the subject. The authors also thank C. Thienel for discussions and L. Maier for help with device fabrication. This work was supported by the Deutsche Forschungsgemeinschaft via SPP1386, the Swiss National Science Foundation, the Spanish MICINN Juan de la Cierva programme and MAT2014-58241-P, COST Action MP1209.

Author information

Affiliations

Authors

Contributions

H.T., H.B. and L.W.M. designed the experiment. C.H. and W.H. provided the wafer material. F.A. fabricated the sample. H.T. and F.A. conducted the measurements. R.S. and B.S. performed the model calculations. All authors discussed the results. H.T., B.S., R.S., H.B. and L.W.M. wrote the manuscript.

Corresponding authors

Correspondence to Holger Thierschmann or Laurens W. Molenkamp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 485 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thierschmann, H., Sánchez, R., Sothmann, B. et al. Three-terminal energy harvester with coupled quantum dots. Nature Nanotech 10, 854–858 (2015). https://doi.org/10.1038/nnano.2015.176

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research